-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpure_cnn.py
executable file
·145 lines (115 loc) · 5.68 KB
/
pure_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import numpy as np
import matplotlib
from matplotlib import pyplot as plt
import keras
from keras.models import Sequential
from keras.optimizers import Adam, SGD
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, TensorBoard
from keras.constraints import maxnorm
from keras.models import load_model
from keras.layers import GlobalAveragePooling2D, Lambda, Conv2D, MaxPooling2D, Dropout, Dense, Flatten, Activation
from keras.preprocessing.image import ImageDataGenerator
from keras.datasets import cifar10
from networks.train_plot import PlotLearning
# A pure CNN model from https://arxiv.org/pdf/1412.6806.pdf
# Code taken from https://github.com/09rohanchopra/cifar10
class PureCnn:
def __init__(self, epochs=350, batch_size=128, load_weights=True):
self.name = 'pure_cnn'
self.model_filename = 'networks/models/pure_cnn.h5'
self.num_classes = 10
self.input_shape = 32, 32, 3
self.batch_size = batch_size
self.epochs = epochs
self.learn_rate = 1.0e-4
self.log_filepath = r'networks/models/pure_cnn/'
if load_weights:
try:
self._model = load_model(self.model_filename)
print('Successfully loaded', self.name)
except (ImportError, ValueError, OSError):
print('Failed to load', self.name)
def count_params(self):
return self._model.count_params()
def color_preprocessing(self, x_train, x_test):
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
mean = [125.307, 122.95, 113.865]
std = [62.9932, 62.0887, 66.7048]
for i in range(3):
x_train[:,:,:,i] = (x_train[:,:,:,i] - mean[i]) / std[i]
x_test[:,:,:,i] = (x_test[:,:,:,i] - mean[i]) / std[i]
return x_train, x_test
def pure_cnn_network(self, input_shape):
model = Sequential()
model.add(Conv2D(96, (3, 3), activation='relu', padding = 'same', input_shape=input_shape))
model.add(Dropout(0.2))
model.add(Conv2D(96, (3, 3), activation='relu', padding = 'same'))
model.add(Conv2D(96, (3, 3), activation='relu', padding = 'same', strides = 2))
model.add(Dropout(0.5))
model.add(Conv2D(192, (3, 3), activation='relu', padding = 'same'))
model.add(Conv2D(192, (3, 3), activation='relu', padding = 'same'))
model.add(Conv2D(192, (3, 3), activation='relu', padding = 'same', strides = 2))
model.add(Dropout(0.5))
model.add(Conv2D(192, (3, 3), padding = 'same'))
model.add(Activation('relu'))
model.add(Conv2D(192, (1, 1),padding='valid'))
model.add(Activation('relu'))
model.add(Conv2D(10, (1, 1), padding='valid'))
model.add(GlobalAveragePooling2D())
model.add(Activation('softmax'))
return model
def train(self):
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = keras.utils.to_categorical(y_train, self.num_classes)
y_test = keras.utils.to_categorical(y_test, self.num_classes)
# color preprocessing
x_train, x_test = self.color_preprocessing(x_train, x_test)
model = self.pure_cnn_network(self.input_shape)
model.summary()
# Save the best model during each training checkpoint
checkpoint = ModelCheckpoint(self.model_filename,
monitor='val_loss',
verbose=0,
save_best_only= True,
mode='auto')
plot_callback = PlotLearning()
tb_cb = TensorBoard(log_dir=self.log_filepath, histogram_freq=0)
cbks = [checkpoint, plot_callback, tb_cb]
# set data augmentation
print('Using real-time data augmentation.')
datagen = ImageDataGenerator(horizontal_flip=True,
width_shift_range=0.125,height_shift_range=0.125,fill_mode='constant',cval=0.)
datagen.fit(x_train)
model.compile(loss='categorical_crossentropy', # Better loss function for neural networks
optimizer=Adam(lr=self.learn_rate), # Adam optimizer with 1.0e-4 learning rate
metrics = ['accuracy']) # Metrics to be evaluated by the model
model.fit_generator(datagen.flow(x_train, y_train, batch_size = self.batch_size),
epochs = self.epochs,
validation_data= (x_test, y_test),
callbacks=cbks,
verbose=1)
model.save(self.model_filename)
self._model = model
def color_process(self, imgs):
if imgs.ndim < 4:
imgs = np.array([imgs])
imgs = imgs.astype('float32')
mean = [125.307, 122.95, 113.865]
std = [62.9932, 62.0887, 66.7048]
for img in imgs:
for i in range(3):
img[:,:,i] = (img[:,:,i] - mean[i]) / std[i]
return imgs
def predict(self, img):
processed = self.color_process(img)
return self._model.predict(processed, batch_size=self.batch_size)
def predict_one(self, img):
return self.predict(img)[0]
def accuracy(self):
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = keras.utils.to_categorical(y_train, self.num_classes)
y_test = keras.utils.to_categorical(y_test, self.num_classes)
# color preprocessing
x_train, x_test = self.color_preprocessing(x_train, x_test)
return self._model.evaluate(x_test, y_test, verbose=0)[1]