-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlenet.py
executable file
·139 lines (114 loc) · 5.49 KB
/
lenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import keras
import numpy as np
from keras import optimizers
from keras.datasets import cifar10
from keras.models import Sequential, load_model
from keras.layers import Conv2D, Dense, Flatten, MaxPooling2D
from keras.callbacks import LearningRateScheduler, TensorBoard, ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
from keras.regularizers import l2
from networks.train_plot import PlotLearning
# Code taken from https://github.com/BIGBALLON/cifar-10-cnn
class LeNet:
def __init__(self, epochs=200, batch_size=128, load_weights=True):
self.name = 'lenet'
self.model_filename = 'networks/models/lenet.h5'
self.num_classes = 10
self.input_shape = 32, 32, 3
self.batch_size = batch_size
self.epochs = epochs
self.iterations = 391
self.weight_decay = 0.0001
self.log_filepath = r'networks/models/lenet/'
if load_weights:
try:
self._model = load_model(self.model_filename)
print('Successfully loaded', self.name)
except (ImportError, ValueError, OSError):
print('Failed to load', self.name)
def count_params(self):
return self._model.count_params()
def color_preprocessing(self, x_train, x_test):
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
mean = [125.307, 122.95, 113.865]
std = [62.9932, 62.0887, 66.7048]
for i in range(3):
x_train[:,:,:,i] = (x_train[:,:,:,i] - mean[i]) / std[i]
x_test[:,:,:,i] = (x_test[:,:,:,i] - mean[i]) / std[i]
return x_train, x_test
def build_model(self):
model = Sequential()
model.add(Conv2D(6, (5, 5), padding='valid', activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(self.weight_decay), input_shape=self.input_shape))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(Conv2D(16, (5, 5), padding='valid', activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(self.weight_decay)))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(120, activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(self.weight_decay) ))
model.add(Dense(84, activation = 'relu', kernel_initializer='he_normal', kernel_regularizer=l2(self.weight_decay) ))
model.add(Dense(10, activation = 'softmax', kernel_initializer='he_normal', kernel_regularizer=l2(self.weight_decay) ))
sgd = optimizers.SGD(lr=.1, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
return model
def scheduler(self, epoch):
if epoch <= 60:
return 0.05
if epoch <= 120:
return 0.01
if epoch <= 160:
return 0.002
return 0.0004
def train(self):
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = keras.utils.to_categorical(y_train, self.num_classes)
y_test = keras.utils.to_categorical(y_test, self.num_classes)
# color preprocessing
x_train, x_test = self.color_preprocessing(x_train, x_test)
# build network
model = self.build_model()
model.summary()
# Save the best model during each training checkpoint
checkpoint = ModelCheckpoint(self.model_filename,
monitor='val_loss',
verbose=0,
save_best_only= True,
mode='auto')
plot_callback = PlotLearning()
tb_cb = TensorBoard(log_dir=self.log_filepath, histogram_freq=0)
cbks = [checkpoint, plot_callback, tb_cb]
# using real-time data augmentation
print('Using real-time data augmentation.')
datagen = ImageDataGenerator(horizontal_flip=True,
width_shift_range=0.125,height_shift_range=0.125,fill_mode='constant',cval=0.)
datagen.fit(x_train)
# start traing
model.fit_generator(datagen.flow(x_train, y_train,batch_size=self.batch_size),
steps_per_epoch=self.iterations,
epochs=self.epochs,
callbacks=cbks,
validation_data=(x_test, y_test))
# save model
model.save(self.model_filename)
self._model = model
def color_process(self, imgs):
if imgs.ndim < 4:
imgs = np.array([imgs])
imgs = imgs.astype('float32')
mean = [125.307, 122.95, 113.865]
std = [62.9932, 62.0887, 66.7048]
for img in imgs:
for i in range(3):
img[:,:,i] = (img[:,:,i] - mean[i]) / std[i]
return imgs
def predict(self, img):
processed = self.color_process(img)
return self._model.predict(processed, batch_size=self.batch_size)
def predict_one(self, img):
return self.predict(img)[0]
def accuracy(self):
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
y_train = keras.utils.to_categorical(y_train, self.num_classes)
y_test = keras.utils.to_categorical(y_test, self.num_classes)
# color preprocessing
x_train, x_test = self.color_preprocessing(x_train, x_test)
return self._model.evaluate(x_test, y_test, verbose=0)[1]