-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshor.py
159 lines (134 loc) · 5.24 KB
/
shor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from __future__ import print_function
import math
import random
import sys
from fractions import Fraction
try:
from math import gcd
except ImportError:
from fractions import gcd
from builtins import input
import projectq.libs.math
import projectq.setups.decompositions
from projectq.backends import Simulator, ResourceCounter
from projectq.cengines import (MainEngine,
AutoReplacer,
LocalOptimizer,
TagRemover,
InstructionFilter,
DecompositionRuleSet)
from projectq.libs.math import (AddConstant,
AddConstantModN,
MultiplyByConstantModN)
from projectq.meta import Control
from projectq.ops import (X,
Measure,
H,
R,
QFT,
Swap,
get_inverse,
BasicMathGate)
def run_shor(eng, N, a, verbose=False):
"""
Runs the quantum subroutine of Shor's algorithm for factoring.
Args:
eng (MainEngine): Main compiler engine to use.
N (int): Number to factor.
a (int): Relative prime to use as a base for a^x mod N.
verbose (bool): If True, display intermediate measurement results.
Returns:
r (float): Potential period of a.
"""
n = int(math.ceil(math.log(N, 2)))
x = eng.allocate_qureg(n)
X | x[0]
measurements = [0] * (2 * n) # will hold the 2n measurement results
ctrl_qubit = eng.allocate_qubit()
for k in range(2 * n):
current_a = pow(a, 1 << (2 * n - 1 - k), N)
# one iteration of 1-qubit QPE
H | ctrl_qubit
with Control(eng, ctrl_qubit):
MultiplyByConstantModN(current_a, N) | x
# perform inverse QFT --> Rotations conditioned on previous outcomes
for i in range(k):
if measurements[i]:
R(-math.pi/(1 << (k - i))) | ctrl_qubit
H | ctrl_qubit
# and measure
Measure | ctrl_qubit
eng.flush()
measurements[k] = int(ctrl_qubit)
if measurements[k]:
X | ctrl_qubit
if verbose:
print("\033[95m{}\033[0m".format(measurements[k]), end="")
sys.stdout.flush()
Measure | x
# turn the measured values into a number in [0,1)
y = sum([(measurements[2 * n - 1 - i]*1. / (1 << (i + 1)))
for i in range(2 * n)])
# continued fraction expansion to get denominator (the period?)
r = Fraction(y).limit_denominator(N-1).denominator
# return the (potential) period
return r
# Filter function, which defines the gate set for the first optimization
# (don't decompose QFTs and iQFTs to make cancellation easier)
def high_level_gates(eng, cmd):
g = cmd.gate
if g == QFT or get_inverse(g) == QFT or g == Swap:
return True
if isinstance(g, BasicMathGate):
return False
if isinstance(g, AddConstant):
return True
elif isinstance(g, AddConstantModN):
return True
return False
return eng.next_engine.is_available(cmd)
if __name__ == "__main__":
# build compilation engine list
resource_counter = ResourceCounter()
rule_set = DecompositionRuleSet(modules=[projectq.libs.math,
projectq.setups.decompositions])
compilerengines = [AutoReplacer(rule_set),
InstructionFilter(high_level_gates),
TagRemover(),
LocalOptimizer(3),
AutoReplacer(rule_set),
TagRemover(),
LocalOptimizer(3),
resource_counter]
# make the compiler and run the circuit on the simulator backend
eng = MainEngine(Simulator(), compilerengines)
# print welcome message and ask the user for the number to factor
print("\n\t\033[37mprojectq\033[0m\n\t--------\n\tImplementation of Shor"
"\'s algorithm.", end="")
N = int(input('\n\tNumber to factor: '))
print("\n\tFactoring N = {}: \033[0m".format(N), end="")
# choose a base at random:
a = int(random.random()*N)
if not gcd(a, N) == 1:
print("\n\n\t\033[92mOoops, we were lucky: Chose non relative prime"
" by accident :)")
print("\tFactor: {}\033[0m".format(gcd(a, N)))
else:
# run the quantum subroutine
r = run_shor(eng, N, a, True)
# try to determine the factors
if r % 2 != 0:
r *= 2
apowrhalf = pow(a, r >> 1, N)
f1 = gcd(apowrhalf + 1, N)
f2 = gcd(apowrhalf - 1, N)
if ((not f1 * f2 == N) and f1 * f2 > 1
and int(1. * N / (f1 * f2)) * f1 * f2 == N):
f1, f2 = f1*f2, int(N/(f1*f2))
if f1 * f2 == N and f1 > 1 and f2 > 1:
print("\n\n\t\033[92mFactors found :-) : {} * {} = {}\033[0m"
.format(f1, f2, N))
else:
print("\n\n\t\033[91mBad luck: Found {} and {}\033[0m".format(f1,
f2))
print(resource_counter) # print resource usage