@@ -334,3 +334,103 @@ stride parameters.
334
334
-1.00091806276211814 -0.65508286752651457
335
335
0.0 0.70738744643074303
336
336
337
+ Sparse Matrices
338
+ ---------------
339
+
340
+ `Sparse matrices <http://en.wikipedia.org/wiki/Sparse_matrix >`_ are
341
+ matrices that are primarily populated with zeros. Sparse matrices may
342
+ be used when operations on the sparse representation of a matrix lead
343
+ to considerable gains in either time or space when compared to
344
+ performing the same operations on a dense matrix.
345
+
346
+ In julia, sparse matrices are stored in the `Compressed Sparse Column
347
+ (CSC) format
348
+ <http://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_column_.28CSC_or_CCS.29> `_. Julia
349
+ sparse matrices have the type ``SparseMatrixCSC{Tv,Ti} ``, where ``Tv ``
350
+ is the type of the nonzero values, and ``Ti `` is the integer type for
351
+ storing column pointers and row indices``.
352
+
353
+ ::
354
+
355
+ type SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrix{Tv,Ti}
356
+ m::Int # Number of rows
357
+ n::Int # Number of columns
358
+ colptr::Vector{Ti} # Column i is in colptr[i]:(colptr[i+1]-1)
359
+ rowval::Vector{Ti} # Row values of nonzeros
360
+ nzval::Vector{Tv} # Nonzero values
361
+ end
362
+
363
+ The simplest way to create sparse matrices are using functions
364
+ equivalent to the ``zeros `` and ``eye `` functions that Julia provides
365
+ for working with dense matrices. To produce sparse matrices instead,
366
+ you can use the same names with an ``sp `` prefix:
367
+
368
+ ::
369
+
370
+ julia> spzeros(3,5)
371
+ 3x5 sparse matrix with 0 nonzeros:
372
+
373
+ julia> speye(3,5)
374
+ 3x5 sparse matrix with 3 nonzeros:
375
+ [1, 1] = 1.0
376
+ [2, 2] = 1.0
377
+ [3, 3] = 1.0
378
+
379
+ The ``sparse `` function is often a handy way to construct sparse
380
+ matrices. It takes as its input a vector ``I `` of row indices, a
381
+ vector ``J `` of column indices, and a vector ``V `` of nonzero
382
+ values. ``sparse(I,J,V) `` constructs a sparse matrix such that
383
+ ``S[I[k], J[k]] = V[k] ``.
384
+
385
+ ::
386
+
387
+ julia> I = [1, 4, 3, 5]; J = [4, 7, 18, 9]; V = [1, 2, -5, 3];
388
+
389
+ julia> sparse(I,J,V)
390
+ 5x18 sparse matrix with 4 nonzeros:
391
+ [1 , 4] = 1
392
+ [4 , 7] = 2
393
+ [5 , 9] = 3
394
+ [3 , 18] = -5
395
+
396
+ The inverse of the ``sparse `` function is ``findn ``, which
397
+ retrieves the inputs used to create the sparse matrix.
398
+
399
+ ::
400
+
401
+ julia> findn(S)
402
+ ([1, 4, 5, 3],[4, 7, 9, 18])
403
+
404
+ julia> findn_nzs(S)
405
+ ([1, 4, 5, 3],[4, 7, 9, 18],[1, 2, 3, -5])
406
+
407
+ Another way to create sparse matrices is to convert a dense matrix
408
+ into a sparse matrix using the ``sparse `` function:
409
+
410
+ ::
411
+
412
+ julia> sparse(eye(5))
413
+ 5x5 sparse matrix with 5 nonzeros:
414
+ [1, 1] = 1.0
415
+ [2, 2] = 1.0
416
+ [3, 3] = 1.0
417
+ [4, 4] = 1.0
418
+ [5, 5] = 1.0
419
+
420
+ You can go in the other direction using the ``dense `` or the ``full ``
421
+ function. The ``issparse `` function can be used to query if a matrix
422
+ is sparse.
423
+
424
+ ::
425
+
426
+ julia> issparse(speye(5))
427
+ true
428
+
429
+ Arithmetic operations on sparse matrices also work as they do on dense
430
+ matrices. Indexing of, assignment into, and concatenation of sparse
431
+ matrices work in the same way as dense matrices. Indexing operations,
432
+ especially assignment, are expensive, when carried out one element at
433
+ a time. In many cases it may be better to convert the sparse matrix
434
+ into ``(I,J,V) `` format using ``find_nzs ``, manipulate the nonzeros or
435
+ the structure in the dense vectors ``(I,J,V) ``, and then reconstruct
436
+ the sparse matrix.
0 commit comments