This repository was archived by the owner on Dec 16, 2022. It is now read-only.
forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathstatistics.jl
201 lines (163 loc) · 5.49 KB
/
statistics.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
@test median([1.]) == 1.
@test median([1.,3]) == 2.
@test median([1.,3,2]) == 2.
@test median([1,3,2]) == 2.0
@test median([1,3,2,4]) == 2.5
@test median([0.0,Inf]) == Inf
@test median([0.0,-Inf]) == -Inf
@test median([0.,Inf,-Inf]) == 0.0
@test median([1.,-1.,Inf,-Inf]) == 0.0
@test isnan(median([-Inf,Inf]))
@test_throws median([])
@test_throws median([NaN])
@test_throws median([0.0,NaN])
@test_throws median([NaN,0.0])
@test mean([1,2,3]) == 2.
@test mean([0 1 2; 4 5 6], 1) == [2. 3. 4.]
@test mean([1 2 3; 4 5 6], 1) == [2.5 3.5 4.5]
# test var & std
@test var(1:8) == 6.
@test_approx_eq varm([1,2,3], 2) 1.
@test_approx_eq var([1,2,3]) 1.
@test_approx_eq var([1,2,3]; corrected=false) 2.0/3
@test_approx_eq var([1,2,3]; mean=0) 7.
@test_approx_eq var([1,2,3]; mean=0, corrected=false) 14.0/3
@test_approx_eq var([1 2 3 4 5; 6 7 8 9 10], 2) [2.5 2.5]'
@test_approx_eq var([1 2 3 4 5; 6 7 8 9 10], 2; corrected=false) [2.0 2.0]'
@test_approx_eq stdm([1,2,3], 2) 1.
@test_approx_eq std([1,2,3]) 1.
@test_approx_eq std([1,2,3]; corrected=false) sqrt(2.0/3)
@test_approx_eq std([1,2,3]; mean=0) sqrt(7.0)
@test_approx_eq std([1,2,3]; mean=0, corrected=false) sqrt(14.0/3)
@test_approx_eq std([1 2 3 4 5; 6 7 8 9 10], 2) sqrt([2.5 2.5]')
@test_approx_eq std([1 2 3 4 5; 6 7 8 9 10], 2; corrected=false) sqrt([2.0 2.0]')
A = Complex128[exp(i*im) for i in 1:10^4]
@test_approx_eq varm(A,0.) sum(map(abs2,A))/(length(A)-1)
@test_approx_eq varm(A,mean(A)) var(A)
# test covariance
function safe_cov(x, y, zm::Bool, cr::Bool)
n = length(x)
if !zm
x = x .- mean(x)
y = y .- mean(y)
end
dot(vec(x), vec(y)) / (n - int(cr))
end
X = [1. 2. 3. 4. 5.; 5. 4. 6. 2. 1.]'
Y = [6. 1. 5. 3. 2.; 2. 7. 8. 4. 3.]'
for vd in [1, 2], zm in [true, false], cr in [true, false]
# println("vd = $vd: zm = $zm, cr = $cr")
if vd == 1
k = size(X, 2)
Cxx = zeros(k, k)
Cxy = zeros(k, k)
for i = 1:k, j = 1:k
Cxx[i,j] = safe_cov(X[:,i], X[:,j], zm, cr)
Cxy[i,j] = safe_cov(X[:,i], Y[:,j], zm, cr)
end
x1 = vec(X[:,1])
y1 = vec(Y[:,1])
else
k = size(X, 1)
Cxx = zeros(k, k)
Cxy = zeros(k, k)
for i = 1:k, j = 1:k
Cxx[i,j] = safe_cov(X[i,:], X[j,:], zm, cr)
Cxy[i,j] = safe_cov(X[i,:], Y[j,:], zm, cr)
end
x1 = vec(X[1,:])
y1 = vec(Y[1,:])
end
c = zm ? cov(x1; mean=0, corrected=cr) :
cov(x1; corrected=cr)
@test isa(c, Float64)
@test_approx_eq c Cxx[1,1]
C = zm ? cov(X; vardim=vd, mean=0, corrected=cr) :
cov(X; vardim=vd, corrected=cr)
@test size(C) == (k, k)
@test_approx_eq C Cxx
c = zm ? cov(x1, y1; mean=0, corrected=cr) :
cov(x1, y1; corrected=cr)
@test isa(c, Float64)
@test_approx_eq c Cxy[1,1]
C = zm ? cov(x1, Y; vardim=vd, mean=0, corrected=cr) :
cov(x1, Y; vardim=vd, corrected=cr)
@test size(C) == (1, k)
@test_approx_eq C Cxy[1,:]
C = zm ? cov(X, y1; vardim=vd, mean=0, corrected=cr) :
cov(X, y1; vardim=vd, corrected=cr)
@test size(C) == (k, 1)
@test_approx_eq C Cxy[:,1]
C = zm ? cov(X, Y; vardim=vd, mean=0, corrected=cr) :
cov(X, Y; vardim=vd, corrected=cr)
@test size(C) == (k, k)
@test_approx_eq C Cxy
end
# test correlation
function safe_cor(x, y, zm::Bool)
if !zm
x = x .- mean(x)
y = y .- mean(y)
end
x = vec(x)
y = vec(y)
dot(x, y) / (sqrt(dot(x, x)) * sqrt(dot(y, y)))
end
for vd in [1, 2], zm in [true, false]
# println("vd = $vd: zm = $zm")
if vd == 1
k = size(X, 2)
Cxx = zeros(k, k)
Cxy = zeros(k, k)
for i = 1:k, j = 1:k
Cxx[i,j] = safe_cor(X[:,i], X[:,j], zm)
Cxy[i,j] = safe_cor(X[:,i], Y[:,j], zm)
end
x1 = vec(X[:,1])
y1 = vec(Y[:,1])
else
k = size(X, 1)
Cxx = zeros(k, k)
Cxy = zeros(k, k)
for i = 1:k, j = 1:k
Cxx[i,j] = safe_cor(X[i,:], X[j,:], zm)
Cxy[i,j] = safe_cor(X[i,:], Y[j,:], zm)
end
x1 = vec(X[1,:])
y1 = vec(Y[1,:])
end
c = zm ? cor(x1; mean=0) : cor(x1)
@test isa(c, Float64)
@test_approx_eq c Cxx[1,1]
C = zm ? cor(X; vardim=vd, mean=0) : cor(X; vardim=vd)
@test size(C) == (k, k)
@test_approx_eq C Cxx
c = zm ? cor(x1, y1; mean=0) : cor(x1, y1)
@test isa(c, Float64)
@test_approx_eq c Cxy[1,1]
C = zm ? cor(x1, Y; vardim=vd, mean=0) : cor(x1, Y; vardim=vd)
@test size(C) == (1, k)
@test_approx_eq C Cxy[1,:]
C = zm ? cor(X, y1; vardim=vd, mean=0) : cor(X, y1; vardim=vd)
@test size(C) == (k, 1)
@test_approx_eq C Cxy[:,1]
C = zm ? cor(X, Y; vardim=vd, mean=0) : cor(X, Y; vardim=vd)
@test size(C) == (k, k)
@test_approx_eq C Cxy
end
# test hist
@test sum(hist([1,2,3])[2]) == 3
@test hist([])[2] == []
@test hist([1])[2] == [1]
@test hist([1,2,3],[0,2,4]) == ([0,2,4],[2,1])
@test hist([1,2,3],0:2:4) == (0:2:4,[2,1])
@test all(hist([1:100]/100,0.0:0.01:1.0)[2] .==1)
@test hist([1,1,1,1,1])[2][1] == 5
@test sum(hist2d(rand(100, 2))[3]) == 100
@test hist([1 2 3 4;1 2 3 4]) == (0.0:2.0:4.0, [2 2 0 0; 0 0 2 2])
@test midpoints(1.0:1.0:10.0) == 1.5:1.0:9.5
@test midpoints(1:10) == 1.5:9.5
@test midpoints(Float64[1.0:1.0:10.0]) == Float64[1.5:1.0:9.5]
@test quantile([1,2,3,4],0.5) == 2.5
@test quantile([1., 3],[.25,.5,.75])[2] == median([1., 3])
@test quantile([0.:100.],[.1,.2,.3,.4,.5,.6,.7,.8,.9])[1] == 10.0