This repository was archived by the owner on Dec 16, 2022. It is now read-only.
forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlinalg3.jl
203 lines (178 loc) · 8.05 KB
/
linalg3.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
## Least squares solutions
a = [ones(20) 1:20 1:20]
b = reshape(eye(8, 5), 20, 2)
for elty in (Float32, Float64, Complex64, Complex128)
a = convert(Matrix{elty}, a)
b = convert(Matrix{elty}, b)
# Vector rhs
x = a[:,1:2]\b[:,1]
@test_approx_eq ((a[:,1:2]*x-b[:,1])'*(a[:,1:2]*x-b[:,1]))[1] convert(elty, 2.546616541353384)
# Matrix rhs
x = a[:,1:2]\b
@test_approx_eq det((a[:,1:2]*x-b)'*(a[:,1:2]*x-b)) convert(elty, 4.437969924812031)
# Rank deficient
x = a\b
@test_approx_eq det((a*x-b)'*(a*x-b)) convert(elty, 4.437969924812031)
# Underdetermined minimum norm
x = convert(Matrix{elty}, [1 0 0; 0 1 -1]) \ convert(Vector{elty}, [1,1])
@test_approx_eq x convert(Vector{elty}, [1, 0.5, -0.5])
# symmetric, positive definite
@test_approx_eq inv(convert(Matrix{elty}, [6. 2; 2 1])) convert(Matrix{elty}, [0.5 -1; -1 3])
# symmetric, indefinite
@test_approx_eq inv(convert(Matrix{elty}, [1. 2; 2 1])) convert(Matrix{elty}, [-1. 2; 2 -1]/3)
end
## Test Julia fallbacks to BLAS routines
# matrices with zero dimensions
@test ones(0,5)*ones(5,3) == zeros(0,3)
@test ones(3,5)*ones(5,0) == zeros(3,0)
@test ones(3,0)*ones(0,4) == zeros(3,4)
@test ones(0,5)*ones(5,0) == zeros(0,0)
@test ones(0,0)*ones(0,4) == zeros(0,4)
@test ones(3,0)*ones(0,0) == zeros(3,0)
@test ones(0,0)*ones(0,0) == zeros(0,0)
# 2x2
A = [1 2; 3 4]
B = [5 6; 7 8]
@test A*B == [19 22; 43 50]
@test At_mul_B(A, B) == [26 30; 38 44]
@test A_mul_Bt(A, B) == [17 23; 39 53]
@test At_mul_Bt(A, B) == [23 31; 34 46]
Ai = A+(0.5*im).*B
Bi = B+(2.5*im).*A[[2,1],[2,1]]
@test Ai*Bi == [-21+53.5im -4.25+51.5im; -12+95.5im 13.75+85.5im]
@test Ac_mul_B(Ai, Bi) == [68.5-12im 57.5-28im; 88-3im 76.5-25im]
@test A_mul_Bc(Ai, Bi) == [64.5+5.5im 43+31.5im; 104-18.5im 80.5+31.5im]
@test Ac_mul_Bc(Ai, Bi) == [-28.25-66im 9.75-58im; -26-89im 21-73im]
# 3x3
A = [1 2 3; 4 5 6; 7 8 9].-5
B = [1 0 5; 6 -10 3; 2 -4 -1]
@test A*B == [-26 38 -27; 1 -4 -6; 28 -46 15]
@test Ac_mul_B(A, B) == [-6 2 -25; 3 -12 -18; 12 -26 -11]
@test A_mul_Bc(A, B) == [-14 0 6; 4 -3 -3; 22 -6 -12]
@test Ac_mul_Bc(A, B) == [6 -8 -6; 12 -9 -9; 18 -10 -12]
Ai = A+(0.5*im).*B
Bi = B+(2.5*im).*A[[2,1,3],[2,3,1]]
@test Ai*Bi == [-44.75+13im 11.75-25im -38.25+30im; -47.75-16.5im -51.5+51.5im -56+6im; 16.75-4.5im -53.5+52im -15.5im]
@test Ac_mul_B(Ai, Bi) == [-21+2im -1.75+49im -51.25+19.5im; 25.5+56.5im -7-35.5im 22+35.5im; -3+12im -32.25+43im -34.75-2.5im]
@test A_mul_Bc(Ai, Bi) == [-20.25+15.5im -28.75-54.5im 22.25+68.5im; -12.25+13im -15.5+75im -23+27im; 18.25+im 1.5+94.5im -27-54.5im]
@test Ac_mul_Bc(Ai, Bi) == [1+2im 20.75+9im -44.75+42im; 19.5+17.5im -54-36.5im 51-14.5im; 13+7.5im 11.25+31.5im -43.25-14.5im]
# Generic integer matrix multiplication
A = [1 2 3; 4 5 6] .- 3
B = [2 -2; 3 -5; -4 7]
@test A*B == [-7 9; -4 9]
@test At_mul_Bt(A, B) == [-6 -11 15; -6 -13 18; -6 -15 21]
A = ones(Int, 2, 100)
B = ones(Int, 100, 3)
@test A*B == [100 100 100; 100 100 100]
A = rand(1:20, 5, 5) .- 10
B = rand(1:20, 5, 5) .- 10
@test At_mul_B(A, B) == A'*B
@test A_mul_Bt(A, B) == A*B'
# Preallocated
C = Array(Int, size(A, 1), size(B, 2))
@test A_mul_B!(C, A, B) == A*B
@test At_mul_B!(C, A, B) == A'*B
@test A_mul_Bt!(C, A, B) == A*B'
@test At_mul_Bt!(C, A, B) == A'*B'
# matrix algebra with subarrays of floats (stride != 1)
A = reshape(float64(1:20),5,4)
Aref = A[1:2:end,1:2:end]
Asub = sub(A, 1:2:5, 1:2:4)
b = [1.2,-2.5]
@test (Aref*b) == (Asub*b)
@test At_mul_B(Asub, Asub) == At_mul_B(Aref, Aref)
@test A_mul_Bt(Asub, Asub) == A_mul_Bt(Aref, Aref)
Ai = A .+ im
Aref = Ai[1:2:end,1:2:end]
Asub = sub(Ai, 1:2:5, 1:2:4)
@test Ac_mul_B(Asub, Asub) == Ac_mul_B(Aref, Aref)
@test A_mul_Bc(Asub, Asub) == A_mul_Bc(Aref, Aref)
# syrk & herk
A = reshape(1:1503, 501, 3).-750.0
res = float64([135228751 9979252 -115270247; 9979252 10481254 10983256; -115270247 10983256 137236759])
@test At_mul_B(A, A) == res
@test A_mul_Bt(A',A') == res
cutoff = 501
A = reshape(1:6*cutoff,2*cutoff,3).-(6*cutoff)/2
Asub = sub(A, 1:2:2*cutoff, 1:3)
Aref = A[1:2:2*cutoff, 1:3]
@test At_mul_B(Asub, Asub) == At_mul_B(Aref, Aref)
Ai = A .- im
Asub = sub(Ai, 1:2:2*cutoff, 1:3)
Aref = Ai[1:2:2*cutoff, 1:3]
@test Ac_mul_B(Asub, Asub) == Ac_mul_B(Aref, Aref)
# Matrix exponential
for elty in (Float32, Float64, Complex64, Complex128)
A1 = convert(Matrix{elty}, [4 2 0; 1 4 1; 1 1 4])
eA1 = convert(Matrix{elty}, [147.866622446369 127.781085523181 127.781085523182;
183.765138646367 183.765138646366 163.679601723179;
71.797032399996 91.8825693231832 111.968106246371]')
@test_approx_eq expm(A1) eA1
A2 = convert(Matrix{elty},
[29.87942128909879 0.7815750847907159 -2.289519314033932;
0.7815750847907159 25.72656945571064 8.680737820540137;
-2.289519314033932 8.680737820540137 34.39400925519054])
eA2 = convert(Matrix{elty},
[ 5496313853692458.0 -18231880972009236.0 -30475770808580460.0;
-18231880972009252.0 60605228702221920.0 101291842930249760.0;
-30475770808580480.0 101291842930249728.0 169294411240851968.0])
@test_approx_eq expm(A2) eA2
A3 = convert(Matrix{elty}, [-131 19 18;-390 56 54;-387 57 52])
eA3 = convert(Matrix{elty}, [-1.50964415879218 -5.6325707998812 -4.934938326092;
0.367879439109187 1.47151775849686 1.10363831732856;
0.135335281175235 0.406005843524598 0.541341126763207]')
@test_approx_eq expm(A3) eA3
# issue 5116
A4 = [0 10 0 0; -1 0 0 0; 0 0 0 0; -2 0 0 0]
eA4 = [-0.999786072879326 -0.065407069689389 0.0 0.0
0.006540706968939 -0.999786072879326 0.0 0.0
0.0 0.0 1.0 0.0
0.013081413937878 -3.999572145758650 0.0 1.0]
@test_approx_eq expm(A4) eA4
# issue 5116
A5 = [ 0. 0. 0. 0. ; 0. 0. -im 0.; 0. im 0. 0.; 0. 0. 0. 0.]
eA5 = [ 1.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im
0.0+0.0im 1.543080634815244+0.0im 0.0-1.175201193643801im 0.0+0.0im
0.0+0.0im 0.0+1.175201193643801im 1.543080634815243+0.0im 0.0+0.0im
0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im]
@test_approx_eq expm(A5) eA5
# Hessenberg
@test_approx_eq hessfact(A1)[:H] convert(Matrix{elty},
[4.000000000000000 -1.414213562373094 -1.414213562373095
-1.414213562373095 4.999999999999996 -0.000000000000000
0 -0.000000000000002 3.000000000000000])
end
# Hermitian matrix exponential
A1 = randn(4,4) + im*randn(4,4)
A2 = A1 + A1'
@test_approx_eq expm(A2) expm(Hermitian(A2))
# matmul for types w/o sizeof (issue #1282)
A = Array(Complex{Int},10,10)
A[:] = complex(1,1)
A2 = A^2
@test A2[1,1] == 20im
# test sparse matrix norms
Ac = sprandn(10,10,.1) + im* sprandn(10,10,.1)
Ar = sprandn(10,10,.1)
Ai = int(ceil(Ar*100))
@test_approx_eq norm(Ac,1) norm(full(Ac),1)
@test_approx_eq norm(Ac,Inf) norm(full(Ac),Inf)
@test_approx_eq vecnorm(Ac) vecnorm(full(Ac))
@test_approx_eq norm(Ar,1) norm(full(Ar),1)
@test_approx_eq norm(Ar,Inf) norm(full(Ar),Inf)
@test_approx_eq vecnorm(Ar) vecnorm(full(Ar))
@test_approx_eq norm(Ai,1) norm(full(Ai),1)
@test_approx_eq norm(Ai,Inf) norm(full(Ai),Inf)
@test_approx_eq vecnorm(Ai) vecnorm(full(Ai))
# scale real matrix by complex type
@test_throws scale!([1.0], 2.0im)
@test isequal(scale([1.0], 2.0im), Complex{Float64}[2.0im])
@test isequal(scale(Float32[1.0], 2.0f0im), Complex{Float32}[2.0im])
@test isequal(scale(Float32[1.0], 2.0im), Complex{Float64}[2.0im])
@test isequal(scale(Float64[1.0], 2.0f0im), Complex{Float64}[2.0im])
@test isequal(scale(Float32[1.0], big(2.0)im), Complex{BigFloat}[2.0im])
@test isequal(scale(Float64[1.0], big(2.0)im), Complex{BigFloat}[2.0im])
@test isequal(scale(BigFloat[1.0], 2.0im), Complex{BigFloat}[2.0im])
@test isequal(scale(BigFloat[1.0], 2.0f0im), Complex{BigFloat}[2.0im])
# issue #6450
@test dot({1.0,2.0},{3.5,4.5}) === 12.5