Skip to content
This repository was archived by the owner on Dec 16, 2022. It is now read-only.

Latest commit

 

History

History
512 lines (393 loc) · 16.2 KB

performance-tips.rst

File metadata and controls

512 lines (393 loc) · 16.2 KB

Performance Tips

In the following sections, we briefly go through a few techniques that can help make your Julia code run as fast as possible.

Avoid global variables

A global variable might have its value, and therefore its type, change at any point. This makes it difficult for the compiler to optimize code using global variables. Variables should be local, or passed as arguments to functions, whenever possible.

Any code that is performance-critical or being benchmarked should be inside a function.

We find that global names are frequently constants, and declaring them as such greatly improves performance:

const DEFAULT_VAL = 0

Uses of non-constant globals can be optimized by annotating their types at the point of use:

global x
y = f(x::Int + 1)

Writing functions is better style. It leads to more reusable code and clarifies what steps are being done, and what their inputs and outputs are.

Avoid containers with abstract type parameters

When working with parameterized types, including arrays, it is best to avoid parameterizing with abstract types where possible.

Consider the following:

a = Real[]    # typeof(a) = Array{Real,1}
if (f = rand()) < .8
    push!(a, f)
end

Because a is a an array of abstract type Real, it must be able to hold any Real value. Since Real objects can be of arbitrary size and structure, a must be represented as an array of pointers to individually allocated Real objects. Because f will always be a Float64, we should instead, use:

a = Float64[] # typeof(a) = Array{Float64,1}

which will create a contiguous block of 64-bit floating-point values that can be manipulated efficiently.

See also the discussion under :ref:`man-parametric-types`.

Type declarations

In many languages with optional type declarations, adding declarations is the principal way to make code run faster. This is not the case in Julia. In Julia, the compiler generally knows the types of all function arguments, local variables, and expressions. However, there are a few specific instances where declarations are helpful.

Declare specific types for fields of composite types

Given a user-defined type like the following:

type Foo
    field
end

the compiler will not generally know the type of foo.field, since it might be modified at any time to refer to a value of a different type. It will help to declare the most specific type possible, such as field::Float64 or field::Array{Int64,1}.

Annotate values taken from untyped locations

It is often convenient to work with data structures that may contain values of any type, such as the original Foo type above, or cell arrays (arrays of type Array{Any}). But, if you're using one of these structures and happen to know the type of an element, it helps to share this knowledge with the compiler:

function foo(a::Array{Any,1})
    x = a[1]::Int32
    b = x+1
    ...
end

Here, we happened to know that the first element of a would be an Int32. Making an annotation like this has the added benefit that it will raise a run-time error if the value is not of the expected type, potentially catching certain bugs earlier.

Declare types of keyword arguments

Keyword arguments can have declared types:

function with_keyword(x; name::Int = 1)
    ...
end

Functions are specialized on the types of keyword arguments, so these declarations will not affect performance of code inside the function. However, they will reduce the overhead of calls to the function that include keyword arguments.

Functions with keyword arguments have near-zero overhead for call sites that pass only positional arguments.

Passing dynamic lists of keyword arguments, as in f(x; keywords...), can be slow and should be avoided in performance-sensitive code.

Break functions into multiple definitions

Writing a function as many small definitions allows the compiler to directly call the most applicable code, or even inline it.

Here is an example of a "compound function" that should really be written as multiple definitions:

function norm(A)
    if isa(A, Vector)
        return sqrt(real(dot(x,x)))
    elseif isa(A, Matrix)
        return max(svd(A)[2])
    else
        error("norm: invalid argument")
    end
end

This can be written more concisely and efficiently as:

norm(A::Vector) = sqrt(real(dot(x,x)))
norm(A::Matrix) = max(svd(A)[2])

Write "type-stable" functions

When possible, it helps to ensure that a function always returns a value of the same type. Consider the following definition:

pos(x) = x < 0 ? 0 : x

Although this seems innocent enough, the problem is that 0 is an integer (of type Int) and x might be of any type. Thus, depending on the value of x, this function might return a value of either of two types. This behavior is allowed, and may be desirable in some cases. But it can easily be fixed as follows:

pos(x) = x < 0 ? zero(x) : x

There is also a one function, and a more general oftype(x,y) function, which returns y converted to the type of x. The first argument to any of these functions can be either a value or a type.

Avoid changing the type of a variable

An analogous "type-stability" problem exists for variables used repeatedly within a function:

function foo()
    x = 1
    for i = 1:10
        x = x/bar()
    end
    return x
end

Local variable x starts as an integer, and after one loop iteration becomes a floating-point number (the result of the / operator). This makes it more difficult for the compiler to optimize the body of the loop. There are several possible fixes:

  • Initialize x with x = 1.0
  • Declare the type of x: x::Float64 = 1
  • Use an explicit conversion: x = one(T)

Separate kernel functions

Many functions follow a pattern of performing some set-up work, and then running many iterations to perform a core computation. Where possible, it is a good idea to put these core computations in separate functions. For example, the following contrived function returns an array of a randomly-chosen type:

function strange_twos(n)
    a = Array(randbool() ? Int64 : Float64, n)
    for i = 1:n
        a[i] = 2
    end
    return a
end

This should be written as:

function fill_twos!(a)
    for i=1:length(a)
        a[i] = 2
    end
end

function strange_twos(n)
    a = Array(randbool() ? Int64 : Float64, n)
    fill_twos!(a)
    return a
end

Julia's compiler specializes code for argument types at function boundaries, so in the original implementation it does not know the type of a during the loop (since it is chosen randomly). Therefore the second version is generally faster since the inner loop can be recompiled as part of fill_twos! for different types of a.

The second form is also often better style and can lead to more code reuse.

This pattern is used in several places in the standard library. For example, see hvcat_fill in abstractarray.jl, or the fill! function, which we could have used instead of writing our own fill_twos!.

Functions like strange_twos occur when dealing with data of uncertain type, for example data loaded from an input file that might contain either integers, floats, strings, or something else.

Access arrays in memory order, along columns

Multidimensional arrays in Julia are stored in column-major order. This means that arrays are stacked one column at a time. This can be verified using the vec function or the syntax [:] as shown below (notice that the array is ordered [1 3 2 4], not [1 2 3 4]):

julia> x = [1 2; 3 4]
2x2 Array{Int64,2}:
 1  2
 3  4

julia> x[:]
4-element Array{Int64,1}:
 1
 3
 2
 4

This convention for ordering arrays is common in many languages like Fortran, Matlab, and R (to name a few). The alternative to column-major ordering is row-major ordering, which is the convention adopted by C and Python (numpy) among other languages. Remembering the ordering of arrays can have significant performance effects when looping over arrays. A rule of thumb to keep in mind is that with column-major arrays, the first index changes most rapidly. Essentially this means that looping will be faster if the inner-most loop index is the first to appear in a slice expression.

Consider the following contrived example. Imagine we wanted to write a function that accepts a Vector and and returns a square Matrix with either the rows or the columns filled with copies of the input vector. Assume that it is not important whether rows or columns are filled with these copies (perhaps the rest of the code can be easily adapted accordingly). We could conceivably do this in at least four ways (in addition to the recommended call to the built-in function repmat):

function copy_cols{T}(x::Vector{T})
    n = size(x, 1)
    out = Array(eltype(x), n, n)
    for i=1:n
        out[:, i] = x
    end
    out
end

function copy_rows{T}(x::Vector{T})
    n = size(x, 1)
    out = Array(eltype(x), n, n)
    for i=1:n
        out[i, :] = x
    end
    out
end

function copy_col_row{T}(x::Vector{T})
    n = size(x, 1)
    out = Array(T, n, n)
    for col=1:n, row=1:n
        out[row, col] = x[row]
    end
    out
end

function copy_row_col{T}(x::Vector{T})
    n = size(x, 1)
    out = Array(T, n, n)
    for row=1:n, col=1:n
        out[row, col] = x[col]
    end
    out
end

Now we will time each of these functions using the same random 10000 by 1 input vector:

julia> x = randn(10000);

julia> fmt(f) = println(rpad(string(f)*": ", 14, ' '), @elapsed f(x))

julia> map(fmt, {copy_cols, copy_rows, copy_col_row, copy_row_col});
copy_cols:    0.331706323
copy_rows:    1.799009911
copy_col_row: 0.415630047
copy_row_col: 1.721531501

Notice that copy_cols is much faster than copy_rows. This is expected because copy_cols respects the column-based memory layout of the Matrix and fills it one column at a time. Additionally, copy_col_row is much faster than copy_row_col because it follows our rule of thumb that the first element to appear in a slice expression should be coupled with the inner-most loop.

Pre-allocating outputs

If your function returns an Array or some other complex type, it may have to allocate memory. Unfortunately, oftentimes allocation and its converse, garbage collection, are substantial bottlenecks.

Sometimes you can circumvent the need to allocate memory on each function call by pre-allocating the output. As a trivial example, compare

function xinc(x)
    return [x, x+1, x+2]
end

function loopinc()
    y = 0
    for i = 1:10^7
        ret = xinc(i)
        y += ret[2]
    end
    y
end

with

function xinc!{T}(ret::AbstractVector{T}, x::T)
    ret[1] = x
    ret[2] = x+1
    ret[3] = x+2
    nothing
end

function loopinc_prealloc()
    ret = Array(Int, 3)
    y = 0
    for i = 1:10^7
        xinc!(ret, i)
        y += ret[2]
    end
    y
end

Timing results:

julia> @time loopinc()
elapsed time: 1.955026528 seconds (1279975584 bytes allocated)
50000015000000

julia> @time loopinc_prealloc()
elapsed time: 0.078639163 seconds (144 bytes allocated)
50000015000000

Pre-allocation has other advantages, for example by allowing the caller to control the "output" type from an algorithm. In the example above, we could have passed a SubArray rather than an Array, had we so desired.

Taken to its extreme, pre-allocation can make your code uglier, so performance measurements and some judgment may be required.

Avoid string interpolation for I/O

When writing data to a file (or other I/O device), forming extra intermediate strings is a source of overhead. Instead of:

println(file, "$a $b")

use:

println(file, a, " ", b)

The first version of the code forms a string, then writes it to the file, while the second version writes values directly to the file. Also notice that in some cases string interpolation can be harder to read. Consider:

println(file, "$(f(a))$(f(b))")

versus:

println(file, f(a), f(b))

Fix deprecation warnings

A deprecated function internally performs a lookup in order to print a relevant warning only once. This extra lookup can cause a significant slowdown, so all uses of deprecated functions should be modified as suggested by the warnings.

Tweaks

These are some minor points that might help in tight inner loops.

  • Use size(A,n) when possible instead of size(A) or size(A)[n].
  • Avoid unnecessary arrays. For example, instead of sum([x,y,z]) use x+y+z.
  • Use * instead of raising to small integer powers, for example x*x*x instead of x^3.
  • Use abs2(z) instead of abs(z)^2 for complex z. In general, try to rewrite code to use abs2 instead of abs for complex arguments.
  • Use div(x,y) for truncating division of integers instead of trunc(x/y), and fld(x,y) instead of floor(x/y).

Performance Annotations

Sometimes you can enable better optimization by promising certain program properties.

  • Use @inbounds to eliminate array bounds checking within expressions. Be certain before doing this. If the subscripts are ever out of bounds, you may suffer crashes or silent corruption.
  • Write @simd in front of for loops that are amenable to vectorization. This feature is experimental and could change or disappear in future versions of Julia.

Here is an example with both forms of markup:

function tightloop( x, y, z )
    s = zero(eltype(z))
    n = min(length(x),length(y),length(z))
    @simd for i in 1:n
        @inbounds begin
            z[i] = x[i]-y[i]
            s += z[i]*z[i]
        end
    end
    s
end

The range for a @simd for loop should be a one-dimensional range. A variable used for accumulating, such as s in the example, is called a reduction variable. By using``@simd``, you are asserting several properties of the loop:

  • It is safe to execute iterations in arbitrary or overlapping order, with special consideration for reduction variables.
  • Floating-point operations on reduction variables can be reordered, possibly causing different results than without @simd.
  • No iteration ever waits on another iteration to make forward progress.

Using @simd merely gives the compiler license to vectorize. Whether it actually does so depends on the compiler. The current implementation will not vectorize if there are possible early exits from the loop, such as from array bounds checking. This limitation may be lifted in the future.

Tools

Julia includes some tools that may help you improve the performance of your code:

  • :ref:`stdlib-profiling` allows you to measure the performance of your running code and identify lines that serve as bottlenecks.
  • Unexpectedly-large memory allocations---as reported by @time, @allocated, or the profiler (through calls to the garbage-collection routines)---hint that there might be issues with your code. If you don't see another reason for the allocations, suspect a type problem.
  • Using code_typed() on your function can help identify sources of type problems. Look particularly for variables that, contrary to your intentions, are inferred to be Union types. Such problems can usually be fixed using the tips above.