|
| 1 | +import torch |
| 2 | +from torch.optim import Optimizer |
| 3 | + |
| 4 | + |
| 5 | +class DM_RMSprop(Optimizer): |
| 6 | + """Implements the form of RMSProp used in DM 2015 Atari paper. |
| 7 | + Inspired by https://github.com/spragunr/deep_q_rl/blob/master/deep_q_rl/updates.py""" |
| 8 | + |
| 9 | + def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False): |
| 10 | + if not 0.0 <= lr: |
| 11 | + raise ValueError("Invalid learning rate: {}".format(lr)) |
| 12 | + if not 0.0 <= eps: |
| 13 | + raise ValueError("Invalid epsilon value: {}".format(eps)) |
| 14 | + if not 0.0 <= momentum: |
| 15 | + raise ValueError("Invalid momentum value: {}".format(momentum)) |
| 16 | + if not 0.0 <= weight_decay: |
| 17 | + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) |
| 18 | + if not 0.0 <= alpha: |
| 19 | + raise ValueError("Invalid alpha value: {}".format(alpha)) |
| 20 | + |
| 21 | + defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay) |
| 22 | + super(DM_RMSprop, self).__init__(params, defaults) |
| 23 | + |
| 24 | + def __setstate__(self, state): |
| 25 | + super(DM_RMSprop, self).__setstate__(state) |
| 26 | + for group in self.param_groups: |
| 27 | + group.setdefault('momentum', 0) |
| 28 | + group.setdefault('centered', False) |
| 29 | + |
| 30 | + def step(self, closure=None): |
| 31 | + """Performs a single optimization step. |
| 32 | +
|
| 33 | + Arguments: |
| 34 | + closure (callable, optional): A closure that reevaluates the model |
| 35 | + and returns the loss. |
| 36 | + """ |
| 37 | + loss = None |
| 38 | + if closure is not None: |
| 39 | + loss = closure() |
| 40 | + for group in self.param_groups: |
| 41 | + momentum = group['momentum'] |
| 42 | + sq_momentum = group['alpha'] |
| 43 | + epsilon = group['eps'] |
| 44 | + |
| 45 | + for p in group['params']: |
| 46 | + if p.grad is None: |
| 47 | + continue |
| 48 | + grad = p.grad.data |
| 49 | + if grad.is_sparse: |
| 50 | + raise RuntimeError('RMSprop does not support sparse gradients') |
| 51 | + state = self.state[p] |
| 52 | + |
| 53 | + # State initialization |
| 54 | + if len(state) == 0: |
| 55 | + state['step'] = 0 |
| 56 | + state['square_avg'] = torch.zeros_like(p.data) |
| 57 | + if momentum > 0: |
| 58 | + state['momentum_buffer'] = torch.zeros_like(p.data) |
| 59 | + |
| 60 | + mom_buffer = state['momentum_buffer'] |
| 61 | + square_avg = state['square_avg'] |
| 62 | + |
| 63 | + |
| 64 | + state['step'] += 1 |
| 65 | + |
| 66 | + mom_buffer.mul_(momentum) |
| 67 | + mom_buffer.add_((1 - momentum) * grad) |
| 68 | + |
| 69 | + square_avg.mul_(sq_momentum).addcmul_(1 - sq_momentum, grad, grad) |
| 70 | + |
| 71 | + avg = (square_avg - mom_buffer**2 + epsilon).sqrt() |
| 72 | + |
| 73 | + p.data.addcdiv_(-group['lr'], grad, avg) |
| 74 | + |
| 75 | + return loss |
| 76 | + |
0 commit comments