-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
155 lines (133 loc) · 5.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse
import os
import torch
import torch.distributed as dist
import yaml
from datasets import get_dataset
from torchvision.utils import make_grid, save_image
from tqdm import tqdm
from ema_pytorch import EMA
from model.models import get_models_class
from utils import Config, get_optimizer, init_seeds, reduce_tensor, DataLoaderDDP, print0
# ===== training =====
def train(opt):
yaml_path = opt.config
local_rank = opt.local_rank
use_amp = opt.use_amp
with open(yaml_path, 'r') as f:
opt = yaml.full_load(f)
print0(opt)
opt = Config(opt)
model_dir = os.path.join(opt.save_dir, "ckpts")
vis_dir = os.path.join(opt.save_dir, "visual")
if local_rank == 0:
os.makedirs(model_dir, exist_ok=True)
os.makedirs(vis_dir, exist_ok=True)
device = "cuda:%d" % local_rank
DIFFUSION, NETWORK = get_models_class(opt.model_type, opt.net_type)
diff = DIFFUSION(nn_model=NETWORK(**opt.network),
**opt.diffusion,
device=device,
)
diff.to(device)
if local_rank == 0:
ema = EMA(diff, beta=opt.ema, update_after_step=0, update_every=1)
ema.to(device)
diff = torch.nn.SyncBatchNorm.convert_sync_batchnorm(diff)
diff = torch.nn.parallel.DistributedDataParallel(
diff, device_ids=[local_rank], output_device=local_rank)
train_set = get_dataset(name=opt.dataset, root="./data", train=True, flip=opt.flip)
print0("train dataset:", len(train_set))
train_loader, sampler = DataLoaderDDP(train_set,
batch_size=opt.batch_size,
shuffle=True)
lr = opt.lrate
DDP_multiplier = dist.get_world_size()
print0("Using DDP, lr = %f * %d" % (lr, DDP_multiplier))
lr *= DDP_multiplier
optim = get_optimizer(diff.parameters(), opt, lr=lr)
scaler = torch.cuda.amp.GradScaler(enabled=use_amp)
if opt.load_epoch != -1:
target = os.path.join(model_dir, f"model_{opt.load_epoch}.pth")
print0("loading model at", target)
checkpoint = torch.load(target, map_location=device)
diff.load_state_dict(checkpoint['MODEL'])
if local_rank == 0:
ema.load_state_dict(checkpoint['EMA'])
optim.load_state_dict(checkpoint['opt'])
for ep in range(opt.load_epoch + 1, opt.n_epoch):
for g in optim.param_groups:
g['lr'] = lr * min((ep + 1.0) / opt.warm_epoch, 1.0) # warmup
sampler.set_epoch(ep)
dist.barrier()
# training
diff.train()
if local_rank == 0:
now_lr = optim.param_groups[0]['lr']
print(f'epoch {ep}, lr {now_lr:f}')
loss_ema = None
pbar = tqdm(train_loader)
else:
pbar = train_loader
for x, c in pbar:
optim.zero_grad()
x = x.to(device)
loss = diff(x, use_amp=use_amp)
scaler.scale(loss).backward()
scaler.unscale_(optim)
torch.nn.utils.clip_grad_norm_(parameters=diff.parameters(), max_norm=1.0)
scaler.step(optim)
scaler.update()
# logging
dist.barrier()
loss = reduce_tensor(loss)
if local_rank == 0:
ema.update()
if loss_ema is None:
loss_ema = loss.item()
else:
loss_ema = 0.95 * loss_ema + 0.05 * loss.item()
pbar.set_description(f"loss: {loss_ema:.4f}")
# testing
if local_rank == 0:
if ep % 100 == 0 or ep == opt.n_epoch - 1:
pass
else:
continue
if opt.model_type == 'DDPM':
ema_sample_method = ema.ema_model.ddim_sample
elif opt.model_type == 'EDM':
ema_sample_method = ema.ema_model.edm_sample
ema.ema_model.eval()
with torch.no_grad():
x_gen = ema_sample_method(opt.n_sample, x.shape[1:])
# save an image of currently generated samples (top rows)
# followed by real images (bottom rows)
x_real = x[:opt.n_sample]
x_all = torch.cat([x_gen.cpu(), x_real.cpu()])
grid = make_grid(x_all, nrow=10)
save_path = os.path.join(vis_dir, f"image_ep{ep}_ema.png")
save_image(grid, save_path)
print('saved image at', save_path)
# optionally save model
if opt.save_model:
checkpoint = {
'MODEL': diff.state_dict(),
'EMA': ema.state_dict(),
'opt': optim.state_dict(),
}
save_path = os.path.join(model_dir, f"model_{ep}.pth")
torch.save(checkpoint, save_path)
print('saved model at', save_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str)
parser.add_argument('--local_rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument("--use_amp", action='store_true', default=False)
opt = parser.parse_args()
print0(opt)
init_seeds(no=opt.local_rank)
dist.init_process_group(backend='nccl')
torch.cuda.set_device(opt.local_rank)
train(opt)