-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlinear.py
200 lines (172 loc) · 6.84 KB
/
linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
import os
from functools import partial
import torch
import torch.distributed as dist
import yaml
import torch.nn as nn
from datasets import get_dataset
from torch.optim.lr_scheduler import CosineAnnealingLR
from tqdm import tqdm
from ema_pytorch import EMA
from model.models import get_models_class
from utils import Config, init_seeds, gather_tensor, DataLoaderDDP, print0
def get_model(opt, load_epoch):
DIFFUSION, NETWORK = get_models_class(opt.model_type, opt.net_type)
diff = DIFFUSION(nn_model=NETWORK(**opt.network),
**opt.diffusion,
device=device,
)
diff.to(device)
target = os.path.join(opt.save_dir, "ckpts", f"model_{load_epoch}.pth")
print0("loading model at", target)
checkpoint = torch.load(target, map_location=device)
ema = EMA(diff, beta=opt.ema, update_after_step=0, update_every=1)
ema.to(device)
ema.load_state_dict(checkpoint['EMA'])
model = ema.ema_model
model.eval()
return model
class ClassifierDict(nn.Module):
def __init__(self, feat_func, time_list, name_list, base_lr, epoch, img_shape, local_rank, num_classes):
super(ClassifierDict, self).__init__()
self.feat_func = feat_func
self.times = time_list
self.names = name_list
self.classifiers = nn.ModuleDict()
self.optims = {}
self.schedulers = {}
self.loss_fn = nn.CrossEntropyLoss()
for time in self.times:
feats = self.feat_func(torch.zeros(1, *img_shape).to(device), time)
if self.names is None:
self.names = list(feats.keys()) # all available names
for name in self.names:
key = self.make_key(time, name)
layers = nn.Linear(feats[name].shape[1], num_classes)
layers = torch.nn.parallel.DistributedDataParallel(
layers.to(device), device_ids=[local_rank], output_device=local_rank)
optimizer = torch.optim.Adam(layers.parameters(), lr=base_lr)
scheduler = CosineAnnealingLR(optimizer, epoch)
self.classifiers[key] = layers
self.optims[key] = optimizer
self.schedulers[key] = scheduler
def train(self, x, y):
self.classifiers.train()
for time in self.times:
feats = self.feat_func(x, time)
for name in self.names:
key = self.make_key(time, name)
representation = feats[name].detach()
logit = self.classifiers[key](representation)
loss = self.loss_fn(logit, y)
self.optims[key].zero_grad()
loss.backward()
self.optims[key].step()
def test(self, x):
outputs = {}
with torch.no_grad():
self.classifiers.eval()
for time in self.times:
feats = self.feat_func(x, time)
for name in self.names:
key = self.make_key(time, name)
representation = feats[name].detach()
logit = self.classifiers[key](representation)
pred = logit.argmax(dim=-1)
outputs[key] = pred
return outputs
def make_key(self, t, n):
return str(t) + '/' + n
def get_lr(self):
key = self.make_key(self.times[0], self.names[0])
optim = self.optims[key]
return optim.param_groups[0]['lr']
def schedule_step(self):
for time in self.times:
for name in self.names:
key = self.make_key(time, name)
self.schedulers[key].step()
def train(opt):
def test():
preds = {k: [] for k in classifiers.optims.keys()}
accs = {}
labels = []
for image, label in tqdm(valid_loader, disable=(local_rank!=0)):
outputs = classifiers.test(image.to(device))
for key in outputs:
preds[key].append(outputs[key])
labels.append(label.to(device))
for key in preds:
preds[key] = torch.cat(preds[key])
label = torch.cat(labels)
dist.barrier()
label = gather_tensor(label)
for key in preds:
pred = gather_tensor(preds[key])
accs[key] = (pred == label).sum().item() / len(label)
return accs
yaml_path = opt.config
ep = opt.epoch
use_amp = opt.use_amp
grid_search = opt.grid
with open(yaml_path, 'r') as f:
opt = yaml.full_load(f)
print0(opt)
opt = Config(opt)
if ep == -1:
ep = opt.n_epoch - 1
model = get_model(opt, ep)
epoch = opt.linear['n_epoch']
batch_size = opt.linear['batch_size']
base_lr = opt.linear['lrate']
if grid_search:
time_list = [1, 11, 21] if opt.model_type == 'DDPM' else [3, 4, 5]
name_list = None
else:
time_list = [opt.linear['timestep']]
name_list = [opt.linear['blockname']]
train_set = get_dataset(name=opt.dataset, root="./data", train=True, flip=True, crop=True)
valid_set = get_dataset(name=opt.dataset, root="./data", train=False)
train_loader, sampler = DataLoaderDDP(
train_set,
batch_size=batch_size,
shuffle=True,
)
valid_loader, _ = DataLoaderDDP(
valid_set,
batch_size=batch_size,
shuffle=False,
)
feat_func = partial(model.get_feature, norm=False, use_amp=use_amp)
DDP_multiplier = dist.get_world_size()
print0("Using DDP, lr = %f * %d" % (base_lr, DDP_multiplier))
base_lr *= DDP_multiplier
classifiers = ClassifierDict(feat_func, time_list, name_list,
base_lr, epoch, opt.network['image_shape'], local_rank, opt.classes).to(model.device)
for e in range(epoch):
sampler.set_epoch(e)
pbar = tqdm(train_loader, disable=(local_rank!=0))
for i, (image, label) in enumerate(pbar):
pbar.set_description("[epoch %d / iter %d]: lr: %.1e" % (e, i, classifiers.get_lr()))
classifiers.train(image.to(device), label.to(device))
classifiers.schedule_step()
accs = test()
for key in accs:
print0("[key %s]: Test acc: %.2f" % (key, accs[key] * 100))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str)
parser.add_argument("--epoch", type=int, default=-1)
parser.add_argument('--local_rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument("--use_amp", action='store_true', default=False)
parser.add_argument("--grid", action='store_true', default=False)
opt = parser.parse_args()
print0(opt)
local_rank = opt.local_rank
init_seeds(no=local_rank)
dist.init_process_group(backend='nccl')
torch.cuda.set_device(local_rank)
device = "cuda:%d" % local_rank
train(opt)