|
6 | 6 |
|
7 | 7 | #include "Cl2.hpp"
|
8 | 8 | #include "Li2.hpp"
|
9 |
| -#include <limits> |
10 | 9 |
|
11 | 10 | namespace polylogarithm {
|
12 | 11 |
|
13 | 12 | /**
|
14 | 13 | * @brief Clausen function \f$\mathrm{Cl}_2(\theta) = \mathrm{Im}(\mathrm{Li}_2(e^{i\theta}))\f$
|
15 | 14 | * @param x real angle
|
16 | 15 | * @return \f$\mathrm{Cl}_2(\theta)\f$
|
| 16 | + * @author K.S. Kölbig |
| 17 | + * @note Implementation translated by Alexander Voigt from CERNLIB DCLAUS function C326 |
| 18 | + * |
| 19 | + * Journal of Computational and Applied Mathematics 64 (1995) 295-297. |
17 | 20 | */
|
18 | 21 | double Cl2(double x) noexcept
|
19 | 22 | {
|
20 |
| - const double PI = 3.141592653589793; |
21 |
| - const std::complex<double> i(0.0, 1.0); |
| 23 | + const double PI = 3.14159265358979324; |
| 24 | + const double PI2 = 2*PI, PIH = PI/2, RPIH = 2/PI; |
| 25 | + const double A[9] = { |
| 26 | + 0.0279528319735756613, |
| 27 | + 0.0001763088743898116, |
| 28 | + 0.0000012662741461157, |
| 29 | + 0.0000000117171818134, |
| 30 | + 0.0000000001230064129, |
| 31 | + 0.0000000000013952729, |
| 32 | + 0.0000000000000166908, |
| 33 | + 0.0000000000000002076, |
| 34 | + 0.0000000000000000027 |
| 35 | + }; |
| 36 | + const double B[14] = { |
| 37 | + 0.639097088857265341, |
| 38 | + -0.054980569301851716, |
| 39 | + -0.000961261945950606, |
| 40 | + -0.000032054686822550, |
| 41 | + -0.000001329461695426, |
| 42 | + -0.000000062093601824, |
| 43 | + -0.000000003129600656, |
| 44 | + -0.000000000166351954, |
| 45 | + -0.000000000009196527, |
| 46 | + -0.000000000000524004, |
| 47 | + -0.000000000000030580, |
| 48 | + -0.000000000000001820, |
| 49 | + -0.000000000000000110, |
| 50 | + -0.000000000000000007, |
| 51 | + }; |
22 | 52 |
|
23 |
| - while (x >= 2*PI) { |
24 |
| - x -= 2*PI; |
25 |
| - } |
| 53 | + double h = 0; |
| 54 | + double v = std::fmod(std::abs(x), PI2); |
| 55 | + double sgn = x >= 0 ? 1 : -1; |
26 | 56 |
|
27 |
| - while (x < 0.0) { |
28 |
| - x += 2*PI; |
| 57 | + if (v > PI) { |
| 58 | + const double p0 = 6.28125; |
| 59 | + const double p1 = 0.0019353071795864769253; |
| 60 | + v = (p0 - v) + p1; |
| 61 | + sgn = -sgn; |
29 | 62 | }
|
30 | 63 |
|
31 |
| - if (std::abs(x) < std::numeric_limits<double>::epsilon() || |
32 |
| - std::abs(x - PI) < std::numeric_limits<double>::epsilon() || |
33 |
| - std::abs(x - 2*PI) < std::numeric_limits<double>::epsilon()) { |
34 |
| - return 0.0; |
| 64 | + if (v == 0 || v == PI) { |
| 65 | + h = 0; |
| 66 | + } else if (v < PIH) { |
| 67 | + const double u = RPIH*v; |
| 68 | + h = 2*u*u - 1; |
| 69 | + const double alfa = h + h; |
| 70 | + double b0 = 0, b1 = 0, b2 = 0; |
| 71 | + for (int i = 8; i >= 0; i--) { |
| 72 | + b0 = A[i] + alfa*b1 - b2; |
| 73 | + b2 = b1; |
| 74 | + b1 = b0; |
| 75 | + } |
| 76 | + h = v*(1 - std::log(v) + v*v*(b0 - h*b2)/2); |
| 77 | + } else { |
| 78 | + const double u = RPIH*v - 2; |
| 79 | + h = 2*u*u - 1; |
| 80 | + const double alfa = h + h; |
| 81 | + double b0 = 0, b1 = 0, b2 = 0; |
| 82 | + for (int i = 13; i >= 0; i--) { |
| 83 | + b0 = B[i] + alfa*b1 - b2; |
| 84 | + b2 = b1; |
| 85 | + b1 = b0; |
| 86 | + } |
| 87 | + h = (PI - v)*(b0 - h*b2); |
35 | 88 | }
|
36 | 89 |
|
37 |
| - return std::imag(Li2(std::exp(i*x))); |
| 90 | + return sgn*h; |
38 | 91 | }
|
39 | 92 |
|
40 | 93 | /**
|
41 | 94 | * @brief Clausen function \f$\mathrm{Cl}_2(\theta) = \mathrm{Im}(\mathrm{Li}_2(e^{i\theta}))\f$ with long double precision
|
42 | 95 | * @param x real angle
|
43 | 96 | * @return \f$\mathrm{Cl}_2(\theta)\f$
|
| 97 | + * @author K.S. Kölbig |
| 98 | + * @note Implementation translated from CERNLIB DCLAUS function C326 |
| 99 | + * and extended to long double precision by Alexander Voigt. |
| 100 | + * |
| 101 | + * Journal of Computational and Applied Mathematics 64 (1995) 295-297. |
44 | 102 | */
|
45 | 103 | long double Cl2(long double x) noexcept
|
46 | 104 | {
|
47 | 105 | const long double PI = 3.14159265358979323846264338327950288L;
|
48 |
| - const std::complex<long double> i(0.0L, 1.0L); |
| 106 | + const long double PI2 = 2*PI, PIH = PI/2, RPIH = 2/PI; |
| 107 | + const long double A[19] = { |
| 108 | + 0.0279528319735756613494585924765551791L, |
| 109 | + 0.0001763088743898115653057636473920103L, |
| 110 | + 0.0000012662741461156530021975187159184L, |
| 111 | + 0.0000000117171818134392379295428166866L, |
| 112 | + 0.0000000001230064128833746922855709386L, |
| 113 | + 0.0000000000013952728970012911958374309L, |
| 114 | + 0.0000000000000166907761628567345146740L, |
| 115 | + 0.0000000000000002076091315145432983502L, |
| 116 | + 0.0000000000000000026609198306058056092L, |
| 117 | + 0.0000000000000000000349249563561378275L, |
| 118 | + 0.0000000000000000000004673313082962865L, |
| 119 | + 0.0000000000000000000000063542322337428L, |
| 120 | + 0.0000000000000000000000000875698871820L, |
| 121 | + 0.0000000000000000000000000012208003299L, |
| 122 | + 0.0000000000000000000000000000171890569L, |
| 123 | + 0.0000000000000000000000000000002441331L, |
| 124 | + 0.0000000000000000000000000000000034940L, |
| 125 | + 0.0000000000000000000000000000000000503L, |
| 126 | + 0.0000000000000000000000000000000000007L |
| 127 | + }; |
| 128 | + const double B[30] = { |
| 129 | + 0.6390970888572653413071869135953864197L, |
| 130 | + -0.0549805693018517156397035696498958507L, |
| 131 | + -0.0009612619459506064293859076874070709L, |
| 132 | + -0.0000320546868225504765586825318112711L, |
| 133 | + -0.0000013294616954255450141343828695514L, |
| 134 | + -0.0000000620936018243975194590942773212L, |
| 135 | + -0.0000000031296006563911126723262365339L, |
| 136 | + -0.0000000001663519538192669775933926077L, |
| 137 | + -0.0000000000091965272507194254496027281L, |
| 138 | + -0.0000000000005240037738758450093649037L, |
| 139 | + -0.0000000000000305803841873659454134183L, |
| 140 | + -0.0000000000000018196918249487950988000L, |
| 141 | + -0.0000000000000001100398263196261522324L, |
| 142 | + -0.0000000000000000067451775715424687730L, |
| 143 | + -0.0000000000000000004182784651572477035L, |
| 144 | + -0.0000000000000000000261987180876106127L, |
| 145 | + -0.0000000000000000000016553211620337322L, |
| 146 | + -0.0000000000000000000001053943580037580L, |
| 147 | + -0.0000000000000000000000067562822456482L, |
| 148 | + -0.0000000000000000000000004357492971838L, |
| 149 | + -0.0000000000000000000000000282576222954L, |
| 150 | + -0.0000000000000000000000000018415141361L, |
| 151 | + -0.0000000000000000000000000001205472536L, |
| 152 | + -0.0000000000000000000000000000079233873L, |
| 153 | + -0.0000000000000000000000000000005227403L, |
| 154 | + -0.0000000000000000000000000000000346060L, |
| 155 | + -0.0000000000000000000000000000000022982L, |
| 156 | + -0.0000000000000000000000000000000001531L, |
| 157 | + -0.0000000000000000000000000000000000102L, |
| 158 | + -0.0000000000000000000000000000000000007L |
| 159 | + }; |
49 | 160 |
|
50 |
| - while (x >= 2*PI) { |
51 |
| - x -= 2*PI; |
52 |
| - } |
| 161 | + long double h = 0; |
| 162 | + long double v = std::fmod(std::abs(x), PI2); |
| 163 | + long double sgn = x >= 0 ? 1 : -1; |
53 | 164 |
|
54 |
| - while (x < 0.0L) { |
55 |
| - x += 2*PI; |
| 165 | + if (v > PI) { |
| 166 | + const long double p0 = 6.28125L; |
| 167 | + const long double p1 = 0.0019353071795864769252867665590057683943L; |
| 168 | + v = (p0 - v) + p1; |
| 169 | + sgn = -sgn; |
56 | 170 | }
|
57 | 171 |
|
58 |
| - if (std::abs(x) < std::numeric_limits<long double>::epsilon() || |
59 |
| - std::abs(x - PI) < std::numeric_limits<long double>::epsilon() || |
60 |
| - std::abs(x - 2*PI) < std::numeric_limits<long double>::epsilon()) { |
61 |
| - return 0.0L; |
| 172 | + if (v == 0 || v == PI) { |
| 173 | + h = 0; |
| 174 | + } else if (v < PIH) { |
| 175 | + const long double u = RPIH*v; |
| 176 | + h = 2*u*u - 1; |
| 177 | + const long double alfa = h + h; |
| 178 | + long double b0 = 0, b1 = 0, b2 = 0; |
| 179 | + for (int i = 18; i >= 0; i--) { |
| 180 | + b0 = A[i] + alfa*b1 - b2; |
| 181 | + b2 = b1; |
| 182 | + b1 = b0; |
| 183 | + } |
| 184 | + h = v*(1 - std::log(v) + v*v*(b0 - h*b2)/2); |
| 185 | + } else { |
| 186 | + const long double u = RPIH*v - 2; |
| 187 | + h = 2*u*u - 1; |
| 188 | + const long double alfa = h + h; |
| 189 | + long double b0 = 0, b1 = 0, b2 = 0; |
| 190 | + for (int i = 29; i >= 0; i--) { |
| 191 | + b0 = B[i] + alfa*b1 - b2; |
| 192 | + b2 = b1; |
| 193 | + b1 = b0; |
| 194 | + } |
| 195 | + h = (PI - v)*(b0 - h*b2); |
62 | 196 | }
|
63 | 197 |
|
64 |
| - return std::imag(Li2(std::exp(i*x))); |
| 198 | + return sgn*h; |
65 | 199 | }
|
66 | 200 |
|
67 | 201 | } // namespace polylogarithm
|
0 commit comments