|
1 | 1 | #include <math.h>
|
2 | 2 |
|
3 | 3 | /**
|
4 |
| - * @brief Clausen function \f$\mathrm{Cl}_2(\theta) = \mathrm{Im}(\mathrm{Li}_2(e^{i\theta}))\f$ |
| 4 | + * @brief Clausen function \f$\mathrm{Cl}_2(\theta)\f$ |
5 | 5 | * @param x real angle
|
6 | 6 | * @return \f$\mathrm{Cl}_2(\theta)\f$
|
7 | 7 | * @author Alexander Voigt
|
@@ -75,3 +75,79 @@ double clausen_2_wu(double x)
|
75 | 75 |
|
76 | 76 | return sgn*x*sum;
|
77 | 77 | }
|
| 78 | + |
| 79 | +/** |
| 80 | + * @brief Clausen function \f$\mathrm{Cl}_3(\theta)\f$ |
| 81 | + * @param x real angle |
| 82 | + * @return \f$\mathrm{Cl}_3(\theta)\f$ |
| 83 | + * @author Alexander Voigt |
| 84 | + * |
| 85 | + * Implementation as series expansion from Jiming Wu, Xiaoping Zhang, |
| 86 | + * Dongjie Liu: "An efficient calculation of the Clausen functions |
| 87 | + * Cl_n(0)(n >= 2)" |
| 88 | + */ |
| 89 | +double clausen_3_wu(double x) |
| 90 | +{ |
| 91 | + const double PI = 3.14159265358979324; |
| 92 | + const double PI2 = 2*PI; |
| 93 | + const double C[] = { |
| 94 | + 1.2020569031595943, |
| 95 | + -0.75, |
| 96 | + 1.7361111111111111e-02, |
| 97 | + 1.6203703703703704e-04, |
| 98 | + 2.6573129251700680e-06, |
| 99 | + 5.0521751910640800e-08, |
| 100 | + 1.0280221244025958e-09, |
| 101 | + 2.1775508813272637e-11, |
| 102 | + 4.7396483546174904e-13, |
| 103 | + 1.0523517259825012e-14, |
| 104 | + 2.3724645155504571e-16, |
| 105 | + 5.4136342063674700e-18, |
| 106 | + 1.2475096984511389e-19, |
| 107 | + 2.8982349732072164e-21, |
| 108 | + 6.7795306977020209e-23, |
| 109 | + 1.5951668979204825e-24, |
| 110 | + 3.7722999459245736e-26, |
| 111 | + 8.9602350004691215e-28, |
| 112 | + 2.1365627618154762e-29, |
| 113 | + 5.1121551453039508e-31, |
| 114 | + 1.2269426427592847e-32, |
| 115 | + 2.9528444795333068e-34, |
| 116 | + 7.1242132481949272e-36, |
| 117 | + 1.7227144823673827e-37, |
| 118 | + 4.1742940635473232e-39 |
| 119 | + }; |
| 120 | + |
| 121 | + if (x < 0) { |
| 122 | + x = -x; |
| 123 | + } |
| 124 | + |
| 125 | + if (x >= PI2) { |
| 126 | + x = fmod(x, PI2); |
| 127 | + } |
| 128 | + |
| 129 | + if (x > PI) { |
| 130 | + const double p0 = 6.28125; |
| 131 | + const double p1 = 0.0019353071795864769253; |
| 132 | + x = (p0 - x) + p1; |
| 133 | + } |
| 134 | + |
| 135 | + if (x == 0) { |
| 136 | + return C[0]; |
| 137 | + } |
| 138 | + |
| 139 | + if (x == PI) { |
| 140 | + return -0.75*C[0]; |
| 141 | + } |
| 142 | + |
| 143 | + const double x2 = x*x; |
| 144 | + double sum = 0; |
| 145 | + |
| 146 | + for (int i = sizeof(C)/sizeof(C[0]) - 1; i >= 0; --i) { |
| 147 | + sum = x2*sum + C[i]; |
| 148 | + } |
| 149 | + |
| 150 | + sum += x2/2*log(2*sin(x/2)); |
| 151 | + |
| 152 | + return sum; |
| 153 | +} |
0 commit comments