|
62 | 62 |
|
63 | 63 | 时间复杂度 $O(n^2)$,空间复杂度 $O(n)$,其中 $n$ 是数组的长度。
|
64 | 64 |
|
| 65 | +**方法二:线段树** |
| 66 | + |
| 67 | +方法一中,每次查找区间最大值,需要 $O(n)$ 的时间,我们可以借助线段树,将每次查询区间最大值的时间降至 $O(logn)$。 |
| 68 | + |
| 69 | +最多需要查询 $n$ 次,因此,总的时间复杂度为 $O(nlogn)$,空间复杂度 $O(n)$,其中 $n$ 是数组的长度。 |
| 70 | + |
65 | 71 | <!-- tabs:start -->
|
66 | 72 |
|
67 | 73 | ### **Python3**
|
@@ -90,6 +96,68 @@ class Solution:
|
90 | 96 | return dfs(nums)
|
91 | 97 | ```
|
92 | 98 |
|
| 99 | +```python |
| 100 | +# Definition for a binary tree node. |
| 101 | +# class TreeNode: |
| 102 | +# def __init__(self, val=0, left=None, right=None): |
| 103 | +# self.val = val |
| 104 | +# self.left = left |
| 105 | +# self.right = right |
| 106 | +class Solution: |
| 107 | + def constructMaximumBinaryTree(self, nums: List[int]) -> Optional[TreeNode]: |
| 108 | + def dfs(l, r): |
| 109 | + if l > r: |
| 110 | + return None |
| 111 | + val = tree.query(1, l, r) |
| 112 | + root = TreeNode(val) |
| 113 | + root.left = dfs(l, d[val] - 1) |
| 114 | + root.right = dfs(d[val] + 1, r) |
| 115 | + return root |
| 116 | + |
| 117 | + d = {v: i for i, v in enumerate(nums, 1)} |
| 118 | + tree = SegmentTree(nums) |
| 119 | + return dfs(1, len(nums)) |
| 120 | + |
| 121 | + |
| 122 | +class Node: |
| 123 | + def __init__(self): |
| 124 | + self.l = 0 |
| 125 | + self.r = 0 |
| 126 | + self.v = 0 |
| 127 | + |
| 128 | + |
| 129 | +class SegmentTree: |
| 130 | + def __init__(self, nums): |
| 131 | + self.nums = nums |
| 132 | + n = len(nums) |
| 133 | + self.tr = [Node() for _ in range(n << 2)] |
| 134 | + self.build(1, 1, n) |
| 135 | + |
| 136 | + def build(self, u, l, r): |
| 137 | + self.tr[u].l, self.tr[u].r = l, r |
| 138 | + if l == r: |
| 139 | + self.tr[u].v = self.nums[l - 1] |
| 140 | + return |
| 141 | + mid = (l + r) >> 1 |
| 142 | + self.build(u << 1, l, mid) |
| 143 | + self.build(u << 1 | 1, mid + 1, r) |
| 144 | + self.pushup(u) |
| 145 | + |
| 146 | + def query(self, u, l, r): |
| 147 | + if self.tr[u].l >= l and self.tr[u].r <= r: |
| 148 | + return self.tr[u].v |
| 149 | + mid = (self.tr[u].l + self.tr[u].r) >> 1 |
| 150 | + v = 0 |
| 151 | + if l <= mid: |
| 152 | + v = max(v, self.query(u << 1, l, r)) |
| 153 | + if r > mid: |
| 154 | + v = max(v, self.query(u << 1 | 1, l, r)) |
| 155 | + return v |
| 156 | + |
| 157 | + def pushup(self, u): |
| 158 | + self.tr[u].v = max(self.tr[u << 1].v, self.tr[u << 1 | 1].v) |
| 159 | +``` |
| 160 | + |
93 | 161 | ### **Java**
|
94 | 162 |
|
95 | 163 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
@@ -136,6 +204,103 @@ class Solution {
|
136 | 204 | }
|
137 | 205 | ```
|
138 | 206 |
|
| 207 | +```java |
| 208 | +/** |
| 209 | + * Definition for a binary tree node. |
| 210 | + * public class TreeNode { |
| 211 | + * int val; |
| 212 | + * TreeNode left; |
| 213 | + * TreeNode right; |
| 214 | + * TreeNode() {} |
| 215 | + * TreeNode(int val) { this.val = val; } |
| 216 | + * TreeNode(int val, TreeNode left, TreeNode right) { |
| 217 | + * this.val = val; |
| 218 | + * this.left = left; |
| 219 | + * this.right = right; |
| 220 | + * } |
| 221 | + * } |
| 222 | + */ |
| 223 | +class Solution { |
| 224 | + private SegmentTree tree; |
| 225 | + private int[] nums; |
| 226 | + private static int[] d = new int[1010]; |
| 227 | + |
| 228 | + public TreeNode constructMaximumBinaryTree(int[] nums) { |
| 229 | + int n = nums.length; |
| 230 | + this.nums = nums; |
| 231 | + tree = new SegmentTree(nums); |
| 232 | + for (int i = 0; i < n; ++i) { |
| 233 | + d[nums[i]] = i + 1; |
| 234 | + } |
| 235 | + return dfs(1, n); |
| 236 | + } |
| 237 | + |
| 238 | + private TreeNode dfs(int l, int r) { |
| 239 | + if (l > r) { |
| 240 | + return null; |
| 241 | + } |
| 242 | + int val = tree.query(1, l, r); |
| 243 | + TreeNode root = new TreeNode(val); |
| 244 | + root.left = dfs(l, d[val] - 1); |
| 245 | + root.right = dfs(d[val] + 1, r); |
| 246 | + return root; |
| 247 | + } |
| 248 | +} |
| 249 | + |
| 250 | +class Node { |
| 251 | + int l; |
| 252 | + int r; |
| 253 | + int v; |
| 254 | +} |
| 255 | + |
| 256 | +class SegmentTree { |
| 257 | + Node[] tr; |
| 258 | + int[] nums; |
| 259 | + |
| 260 | + public SegmentTree(int[] nums) { |
| 261 | + int n = nums.length; |
| 262 | + this.nums = nums; |
| 263 | + tr = new Node[n << 2]; |
| 264 | + for (int i = 0; i < tr.length; ++i) { |
| 265 | + tr[i] = new Node(); |
| 266 | + } |
| 267 | + build(1, 1, n); |
| 268 | + } |
| 269 | + |
| 270 | + private void build(int u, int l, int r) { |
| 271 | + tr[u].l = l; |
| 272 | + tr[u].r = r; |
| 273 | + if (l == r) { |
| 274 | + tr[u].v = nums[l - 1]; |
| 275 | + return; |
| 276 | + } |
| 277 | + int mid = (l + r) >> 1; |
| 278 | + build(u << 1, l, mid); |
| 279 | + build(u << 1 | 1, mid + 1, r); |
| 280 | + pushup(u); |
| 281 | + } |
| 282 | + |
| 283 | + public int query(int u, int l, int r) { |
| 284 | + if (tr[u].l >= l && tr[u].r <= r) { |
| 285 | + return tr[u].v; |
| 286 | + } |
| 287 | + int mid = (tr[u].l + tr[u].r) >> 1; |
| 288 | + int v = 0; |
| 289 | + if (l <= mid) { |
| 290 | + v = query(u << 1, l, r); |
| 291 | + } |
| 292 | + if (r > mid) { |
| 293 | + v = Math.max(v, query(u << 1 | 1, l, r)); |
| 294 | + } |
| 295 | + return v; |
| 296 | + } |
| 297 | + |
| 298 | + private void pushup(int u) { |
| 299 | + tr[u].v = Math.max(tr[u << 1].v, tr[u << 1 | 1].v); |
| 300 | + } |
| 301 | +} |
| 302 | +``` |
| 303 | + |
139 | 304 | ### **C++**
|
140 | 305 |
|
141 | 306 | ```cpp
|
@@ -172,6 +337,91 @@ public:
|
172 | 337 | };
|
173 | 338 | ```
|
174 | 339 |
|
| 340 | +```cpp |
| 341 | +/** |
| 342 | + * Definition for a binary tree node. |
| 343 | + * struct TreeNode { |
| 344 | + * int val; |
| 345 | + * TreeNode *left; |
| 346 | + * TreeNode *right; |
| 347 | + * TreeNode() : val(0), left(nullptr), right(nullptr) {} |
| 348 | + * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} |
| 349 | + * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} |
| 350 | + * }; |
| 351 | + */ |
| 352 | +class Node { |
| 353 | +public: |
| 354 | + int l, r, v; |
| 355 | +}; |
| 356 | + |
| 357 | +class SegmentTree { |
| 358 | +public: |
| 359 | + vector<Node*> tr; |
| 360 | + vector<int> nums; |
| 361 | + |
| 362 | + SegmentTree(vector<int>& nums) { |
| 363 | + this->nums = nums; |
| 364 | + int n = nums.size(); |
| 365 | + tr.resize(n << 2); |
| 366 | + for (int i = 0; i < tr.size(); ++i) tr[i] = new Node(); |
| 367 | + build(1, 1, n); |
| 368 | + } |
| 369 | + |
| 370 | + void build(int u, int l, int r) { |
| 371 | + tr[u]->l = l; |
| 372 | + tr[u]->r = r; |
| 373 | + if (l == r) { |
| 374 | + tr[u]->v = nums[l - 1]; |
| 375 | + return; |
| 376 | + } |
| 377 | + int mid = (l + r) >> 1; |
| 378 | + build(u << 1, l, mid); |
| 379 | + build(u << 1 | 1, mid + 1, r); |
| 380 | + pushup(u); |
| 381 | + } |
| 382 | + |
| 383 | + int query(int u, int l, int r) { |
| 384 | + if (tr[u]->l >= l && tr[u]->r <= r) return tr[u]->v; |
| 385 | + int mid = (tr[u]->l + tr[u]->r) >> 1; |
| 386 | + int v = 0; |
| 387 | + if (l <= mid) v = query(u << 1, l, r); |
| 388 | + if (r > mid) v = max(v, query(u << 1 | 1, l, r)); |
| 389 | + return v; |
| 390 | + } |
| 391 | + |
| 392 | + void pushup(int u) { |
| 393 | + tr[u]->v = max(tr[u << 1]->v, tr[u << 1 | 1]->v); |
| 394 | + } |
| 395 | +}; |
| 396 | + |
| 397 | +class Solution { |
| 398 | +public: |
| 399 | + SegmentTree* tree; |
| 400 | + vector<int> nums; |
| 401 | + vector<int> d; |
| 402 | + |
| 403 | + TreeNode* constructMaximumBinaryTree(vector<int>& nums) { |
| 404 | + tree = new SegmentTree(nums); |
| 405 | + this->nums = nums; |
| 406 | + d.assign(1010, 0); |
| 407 | + int n = nums.size(); |
| 408 | + for (int i = 0; i < n; ++i) d[nums[i]] = i + 1; |
| 409 | + return dfs(1, nums.size()); |
| 410 | + } |
| 411 | + |
| 412 | + TreeNode* dfs(int l, int r) { |
| 413 | + if (l > r) { |
| 414 | + return nullptr; |
| 415 | + } |
| 416 | + int val = tree->query(1, l, r); |
| 417 | + TreeNode* root = new TreeNode(val); |
| 418 | + root->left = dfs(l, d[val] - 1); |
| 419 | + root->right = dfs(d[val] + 1, r); |
| 420 | + return root; |
| 421 | + } |
| 422 | +}; |
| 423 | +``` |
| 424 | +
|
175 | 425 | ### **Go**
|
176 | 426 |
|
177 | 427 | ```go
|
@@ -204,6 +454,97 @@ func constructMaximumBinaryTree(nums []int) *TreeNode {
|
204 | 454 | }
|
205 | 455 | ```
|
206 | 456 |
|
| 457 | +```go |
| 458 | +/** |
| 459 | + * Definition for a binary tree node. |
| 460 | + * type TreeNode struct { |
| 461 | + * Val int |
| 462 | + * Left *TreeNode |
| 463 | + * Right *TreeNode |
| 464 | + * } |
| 465 | + */ |
| 466 | +func constructMaximumBinaryTree(nums []int) *TreeNode { |
| 467 | + d := make([]int, 1010) |
| 468 | + for i, v := range nums { |
| 469 | + d[v] = i + 1 |
| 470 | + } |
| 471 | + tree := newSegmentTree(nums) |
| 472 | + var dfs func(l, r int) *TreeNode |
| 473 | + dfs = func(l, r int) *TreeNode { |
| 474 | + if l > r { |
| 475 | + return nil |
| 476 | + } |
| 477 | + val := tree.query(1, l, r) |
| 478 | + root := &TreeNode{Val: val} |
| 479 | + root.Left = dfs(l, d[val]-1) |
| 480 | + root.Right = dfs(d[val]+1, r) |
| 481 | + return root |
| 482 | + } |
| 483 | + |
| 484 | + return dfs(1, len(nums)) |
| 485 | +} |
| 486 | + |
| 487 | +type node struct { |
| 488 | + l int |
| 489 | + r int |
| 490 | + v int |
| 491 | +} |
| 492 | + |
| 493 | +type segmentTree struct { |
| 494 | + nums []int |
| 495 | + tr []*node |
| 496 | +} |
| 497 | + |
| 498 | +func newSegmentTree(nums []int) *segmentTree { |
| 499 | + n := len(nums) |
| 500 | + tr := make([]*node, n<<2) |
| 501 | + for i := range tr { |
| 502 | + tr[i] = &node{} |
| 503 | + } |
| 504 | + t := &segmentTree{nums, tr} |
| 505 | + t.build(1, 1, n) |
| 506 | + return t |
| 507 | +} |
| 508 | + |
| 509 | +func (t *segmentTree) build(u, l, r int) { |
| 510 | + t.tr[u].l, t.tr[u].r = l, r |
| 511 | + if l == r { |
| 512 | + t.tr[u].v = t.nums[l-1] |
| 513 | + return |
| 514 | + } |
| 515 | + mid := (l + r) >> 1 |
| 516 | + t.build(u<<1, l, mid) |
| 517 | + t.build(u<<1|1, mid+1, r) |
| 518 | + t.pushup(u) |
| 519 | +} |
| 520 | + |
| 521 | +func (t *segmentTree) query(u, l, r int) int { |
| 522 | + if t.tr[u].l >= l && t.tr[u].r <= r { |
| 523 | + return t.tr[u].v |
| 524 | + } |
| 525 | + mid := (t.tr[u].l + t.tr[u].r) >> 1 |
| 526 | + v := 0 |
| 527 | + if l <= mid { |
| 528 | + v = t.query(u<<1, l, r) |
| 529 | + } |
| 530 | + if r > mid { |
| 531 | + v = max(v, t.query(u<<1|1, l, r)) |
| 532 | + } |
| 533 | + return v |
| 534 | +} |
| 535 | + |
| 536 | +func (t *segmentTree) pushup(u int) { |
| 537 | + t.tr[u].v = max(t.tr[u<<1].v, t.tr[u<<1|1].v) |
| 538 | +} |
| 539 | + |
| 540 | +func max(a, b int) int { |
| 541 | + if a > b { |
| 542 | + return a |
| 543 | + } |
| 544 | + return b |
| 545 | +} |
| 546 | +``` |
| 547 | + |
207 | 548 | ### **C**
|
208 | 549 |
|
209 | 550 | ```c
|
|
0 commit comments