You are given an array nums
consisting of positive integers.
You are also given an integer array queries
of size m
. For the ith
query, you want to make all of the elements of nums
equal to queries[i]
. You can perform the following operation on the array any number of times:
- Increase or decrease an element of the array by
1
.
Return an array answer
of size m
where answer[i]
is the minimum number of operations to make all elements of nums
equal to queries[i]
.
Note that after each query the array is reset to its original state.
Example 1:
Input: nums = [3,1,6,8], queries = [1,5] Output: [14,10] Explanation: For the first query we can do the following operations: - Decrease nums[0] 2 times, so that nums = [1,1,6,8]. - Decrease nums[2] 5 times, so that nums = [1,1,1,8]. - Decrease nums[3] 7 times, so that nums = [1,1,1,1]. So the total number of operations for the first query is 2 + 5 + 7 = 14. For the second query we can do the following operations: - Increase nums[0] 2 times, so that nums = [5,1,6,8]. - Increase nums[1] 4 times, so that nums = [5,5,6,8]. - Decrease nums[2] 1 time, so that nums = [5,5,5,8]. - Decrease nums[3] 3 times, so that nums = [5,5,5,5]. So the total number of operations for the second query is 2 + 4 + 1 + 3 = 10.
Example 2:
Input: nums = [2,9,6,3], queries = [10] Output: [20] Explanation: We can increase each value in the array to 10. The total number of operations will be 8 + 1 + 4 + 7 = 20.
Constraints:
n == nums.length
m == queries.length
1 <= n, m <= 105
1 <= nums[i], queries[i] <= 109
Approach 1: sort + prefix sum + binary search
First, we sort the array
Then, we traverse each query
We can use binary search to find the index
Similarly, we can find the index
Finally, add these two total operation counts together to get the minimum number of operations to change all elements in the array
Time complexity
class Solution:
def minOperations(self, nums: List[int], queries: List[int]) -> List[int]:
nums.sort()
s = list(accumulate(nums, initial=0))
ans = []
for x in queries:
i = bisect_left(nums, x + 1)
t = s[-1] - s[i] - (len(nums) - i) * x
i = bisect_left(nums, x)
t += x * i - s[i]
ans.append(t)
return ans
class Solution {
public List<Long> minOperations(int[] nums, int[] queries) {
Arrays.sort(nums);
int n = nums.length;
long[] s = new long[n + 1];
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
List<Long> ans = new ArrayList<>();
for (int x : queries) {
int i = search(nums, x + 1);
long t = s[n] - s[i] - 1L * (n - i) * x;
i = search(nums, x);
t += 1L * x * i - s[i];
ans.add(t);
}
return ans;
}
private int search(int[] nums, int x) {
int l = 0, r = nums.length;
while (l < r) {
int mid = (l + r) >> 1;
if (nums[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
}
class Solution {
public:
vector<long long> minOperations(vector<int>& nums, vector<int>& queries) {
sort(nums.begin(), nums.end());
int n = nums.size();
vector<long long> s(n + 1);
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
vector<long long> ans;
for (auto& x : queries) {
int i = lower_bound(nums.begin(), nums.end(), x + 1) - nums.begin();
long long t = s[n] - s[i] - 1LL * (n - i) * x;
i = lower_bound(nums.begin(), nums.end(), x) - nums.begin();
t += 1LL * x * i - s[i];
ans.push_back(t);
}
return ans;
}
};
func minOperations(nums []int, queries []int) (ans []int64) {
sort.Ints(nums)
n := len(nums)
s := make([]int, n+1)
for i, x := range nums {
s[i+1] = s[i] + x
}
for _, x := range queries {
i := sort.SearchInts(nums, x+1)
t := s[n] - s[i] - (n-i)*x
i = sort.SearchInts(nums, x)
t += x*i - s[i]
ans = append(ans, int64(t))
}
return
}
function minOperations(nums: number[], queries: number[]): number[] {
nums.sort((a, b) => a - b);
const n = nums.length;
const s: number[] = new Array(n + 1).fill(0);
for (let i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
const search = (x: number): number => {
let l = 0;
let r = n;
while (l < r) {
const mid = (l + r) >> 1;
if (nums[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
};
const ans: number[] = [];
for (const x of queries) {
const i = search(x + 1);
let t = s[n] - s[i] - (n - i) * x;
const j = search(x);
t += x * j - s[j];
ans.push(t);
}
return ans;
}