Given an integer array nums
, return the maximum possible sum of elements of the array such that it is divisible by three.
Example 1:
Input: nums = [3,6,5,1,8] Output: 18 Explanation: Pick numbers 3, 6, 1 and 8 their sum is 18 (maximum sum divisible by 3).
Example 2:
Input: nums = [4] Output: 0 Explanation: Since 4 is not divisible by 3, do not pick any number.
Example 3:
Input: nums = [1,2,3,4,4] Output: 12 Explanation: Pick numbers 1, 3, 4 and 4 their sum is 12 (maximum sum divisible by 3).
Constraints:
1 <= nums.length <= 4 * 104
1 <= nums[i] <= 104
class Solution:
def maxSumDivThree(self, nums: List[int]) -> int:
n = len(nums)
f = [[-inf] * 3 for _ in range(n + 1)]
f[0][0] = 0
for i, x in enumerate(nums, 1):
for j in range(3):
f[i][j] = max(f[i - 1][j], f[i - 1][(j - x) % 3] + x)
return f[n][0]
class Solution:
def maxSumDivThree(self, nums: List[int]) -> int:
f = [0, -inf, -inf]
for x in nums:
g = f[:]
for j in range(3):
g[j] = max(f[j], f[(j - x) % 3] + x)
f = g
return f[0]
class Solution {
public int maxSumDivThree(int[] nums) {
int n = nums.length;
final int inf = 1 << 30;
int[][] f = new int[n + 1][3];
f[0][1] = f[0][2] = -inf;
for (int i = 1; i <= n; ++i) {
int x = nums[i - 1];
for (int j = 0; j < 3; ++j) {
f[i][j] = Math.max(f[i - 1][j], f[i - 1][(j - x % 3 + 3) % 3] + x);
}
}
return f[n][0];
}
}
class Solution {
public int maxSumDivThree(int[] nums) {
final int inf = 1 << 30;
int[] f = new int[] {0, -inf, -inf};
for (int x : nums) {
int[] g = f.clone();
for (int j = 0; j < 3; ++j) {
g[j] = Math.max(f[j], f[(j - x % 3 + 3) % 3] + x);
}
f = g;
}
return f[0];
}
}
class Solution {
public:
int maxSumDivThree(vector<int>& nums) {
int n = nums.size();
const int inf = 1 << 30;
int f[n + 1][3];
f[0][0] = 0;
f[0][1] = f[0][2] = -inf;
for (int i = 1; i <= n; ++i) {
int x = nums[i - 1];
for (int j = 0; j < 3; ++j) {
f[i][j] = max(f[i - 1][j], f[i - 1][(j - x % 3 + 3) % 3] + x);
}
}
return f[n][0];
}
};
class Solution {
public:
int maxSumDivThree(vector<int>& nums) {
const int inf = 1 << 30;
vector<int> f = {0, -inf, -inf};
for (int& x : nums) {
vector<int> g = f;
for (int j = 0; j < 3; ++j) {
g[j] = max(f[j], f[(j - x % 3 + 3) % 3] + x);
}
f = move(g);
}
return f[0];
}
};
func maxSumDivThree(nums []int) int {
n := len(nums)
const inf = 1 << 30
f := make([][3]int, n+1)
f[0] = [3]int{0, -inf, -inf}
for i, x := range nums {
i++
for j := 0; j < 3; j++ {
f[i][j] = max(f[i-1][j], f[i-1][(j-x%3+3)%3]+x)
}
}
return f[n][0]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func maxSumDivThree(nums []int) int {
const inf = 1 << 30
f := [3]int{0, -inf, -inf}
for _, x := range nums {
g := [3]int{}
for j := range f {
g[j] = max(f[j], f[(j-x%3+3)%3]+x)
}
f = g
}
return f[0]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
function maxSumDivThree(nums: number[]): number {
const n = nums.length;
const inf = 1 << 30;
const f: number[][] = Array(n + 1)
.fill(0)
.map(() => Array(3).fill(-inf));
f[0][0] = 0;
for (let i = 1; i <= n; ++i) {
const x = nums[i - 1];
for (let j = 0; j < 3; ++j) {
f[i][j] = Math.max(
f[i - 1][j],
f[i - 1][(j - (x % 3) + 3) % 3] + x,
);
}
}
return f[n][0];
}
function maxSumDivThree(nums: number[]): number {
const inf = 1 << 30;
const f: number[] = [0, -inf, -inf];
for (const x of nums) {
const g = [...f];
for (let j = 0; j < 3; ++j) {
f[j] = Math.max(g[j], g[(j - (x % 3) + 3) % 3] + x);
}
}
return f[0];
}