forked from pdeitel/PythonFundamentalsLiveLessons
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path14_06.py
executable file
·54 lines (41 loc) · 2.27 KB
/
14_06.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# 14.6 Case Study: Unsupervised Machine Learning, Part 1—Dimensionality Reduction
# Loading the Digits Dataset
from sklearn.datasets import load_digits
digits = load_digits()
# Creating a TSNE Estimator for Dimensionality Reduction
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, random_state=11)
# Transforming the Digits Dataset’s Features into Two Dimensions
reduced_data = tsne.fit_transform(digits.data)
reduced_data.shape
# Visualizing the Reduced Data
import matplotlib.pyplot as plt
dots = plt.scatter(reduced_data[:, 0], reduced_data[:, 1],
c='black')
# Visualizing the Reduced Data with Different Colors for Each Digit
dots = plt.scatter(reduced_data[:, 0], reduced_data[:, 1],
c=digits.target, cmap=plt.cm.get_cmap('nipy_spectral_r', 10))
colorbar = plt.colorbar(dots)
# code for visualizing the Digits dataset in 3D
tsne3 = TSNE(n_components=3, random_state=11)
reduced_data3 = tsne3.fit_transform(digits.data)
figure = plt.figure(figsize=(7, 5))
import mpl_toolkits.mplot3d.axes3d as axes3d
axes = axes3d.Axes3D(figure)
dots = axes.scatter(reduced_data3[:, 0], reduced_data3[:, 1], reduced_data3[:, 2],
c=digits.target, cmap=plt.cm.get_cmap('nipy_spectral_r', 10))
colorbar = plt.colorbar(dots)
##########################################################################
# (C) Copyright 2019 by Deitel & Associates, Inc. and #
# Pearson Education, Inc. All Rights Reserved. #
# #
# DISCLAIMER: The authors and publisher of this book have used their #
# best efforts in preparing the book. These efforts include the #
# development, research, and testing of the theories and programs #
# to determine their effectiveness. The authors and publisher make #
# no warranty of any kind, expressed or implied, with regard to these #
# programs or to the documentation contained in these books. The authors #
# and publisher shall not be liable in any event for incidental or #
# consequential damages in connection with, or arising out of, the #
# furnishing, performance, or use of these programs. #
##########################################################################