|
1 | 1 | # Clustering algorithm implementaion and visualization from scratch with python
|
2 | 2 |
|
3 |
| -Three popular clustering algorithms (for d >= 2 dimensions, k >= 2 clusters): |
| 3 | +## Four popular clustering algorithms (for d >= 2 dimensions, k >= 2 clusters): |
| 4 | +- (1) k-means clustering |
| 5 | +- (2) Gaussian mixture model - expectation maximization algorithm (EM-GMM) |
| 6 | +- (3) mean-shift clustering |
| 7 | +- (4) agglomerative clustering |
4 | 8 |
|
5 |
| -- (1) k-means |
6 |
| -- (2) EM-GMM (Gaussian mixture model - expectation maximization algorithm) |
7 |
| -- (3) mean-shift |
| 9 | +## Python implementations: |
| 10 | +- `KMeans.py`: k-means clustering |
| 11 | +- `KMeans_Ver0.py`: second version of k-means implementation as a function |
| 12 | +- `GaussianMM.py`: EM-GMM |
| 13 | +- `GaussianMM_Ver0.py`: second version of EM-GMM implementation with functions of AIC, BIC and predict |
| 14 | +- `MeanShift.py`: mean-shift clustering |
| 15 | +- `Agglomerative`: agglomerative clustering |
8 | 16 |
|
9 |
| -Python implementations: |
10 |
| - |
11 |
| -- KMeans.py: k-means |
12 |
| -- KMeans_Ver0.py: second version of k-means implementation as a function |
13 |
| -- GaussianMM.py: EM-GMM |
14 |
| -- GaussianMM_Ver0.py: second version of EM-GMM implementation with functions of AIC, BIC and predict |
15 |
| -- MeanShift.py: mean-shift |
16 |
| - |
17 |
| -Evaluations and tests: |
18 |
| -- test_2d_visualization.py: tests on 2D datasets with visualization, compared with sklearn implementation |
19 |
| -- data_2d_test folder: datasets for tests |
20 |
| -- test_2d_visualization_results folder: output images of tests |
| 17 | +## Evaluations and tests: |
| 18 | +- `test_2d_visualization.py`: tests on 2D datasets with visualization, compared with sklearn implementation |
| 19 | +- `data_2d_test folder`: datasets for tests |
| 20 | +- `test_2d_visualization_results folder`: output images of tests |
0 commit comments