Skip to content

Latest commit

 

History

History
 
 

Shuffle_Transformer

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer, arxiv

PaddlePaddle training/validation code and pretrained models for Shuffle Transformer.

The official pytorch implementation is here.

This implementation is developed by PaddleViT.

drawing drawing

Shuffle Transformer Model Overview

Update

  • Update (2021-08-11): Model FLOPs and # params are uploaded.
  • Update (2021-08-11): Code is released and ported weights are uploaded.

Models Zoo

Model Acc@1 Acc@5 #Params FLOPs Image Size Crop_pct Interpolation Link
shuffle_vit_tiny 82.39 96.05 28.5M 4.6G 224 0.875 bicubic google/baidu(8a1i)
shuffle_vit_small 83.53 96.57 50.1M 8.8G 224 0.875 bicubic google/baidu(xwh3)
shuffle_vit_base 83.95 96.91 88.4M 15.5G 224 0.875 bicubic google/baidu(1gsr)

*The results are evaluated on ImageNet2012 validation set.

Notebooks

We provide a few notebooks in aistudio to help you get started:

*(coming soon)*

Requirements

Data

ImageNet2012 dataset is used in the following folder structure:

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Usage

To use the model with pretrained weights, download the .pdparam weight file and change related file paths in the following python scripts. The model config files are located in ./configs/.

For example, assume the downloaded weight file is stored in ./shuffle_vit_base_patch4_window7.pdparams, to use the shuffle_vit_base_patch4_window7_224 model in python:

from config import get_config
from shuffle_transformer import build_shuffle_transformer as build_model
# config files in ./configs/
config = get_config('./configs/shuffle_vit_base_patch4_window7_224.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./shuffle_vit_base_patch4_window7_224')
model.set_dict(model_state_dict)

Evaluation

To evaluate Shuffle Transformer model performance on ImageNet2012 with a single GPU, run the following script using command line:

sh run_eval.sh

or

CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
    -cfg='./configs/shuffle_vit_base_patch4_window7_224.yaml' \
    -dataset='imagenet2012' \
    -batch_size=16 \
    -data_path='/dataset/imagenet' \
    -eval \
    -pretrained='./shuffle_vit_base_patch4_window7_224'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh

or

CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
    -cfg='./configs/shuffle_vit_base_patch4_window7_224.yaml' \
    -dataset='imagenet2012' \
    -batch_size=16 \
    -data_path='/dataset/imagenet' \
    -eval \
    -pretrained='./shuffle_vit_base_patch4_window7_224'

Training

To train the Shuffle Transformer model on ImageNet2012 with single GPU, run the following script using command line:

sh run_train.sh

or

CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
  -cfg='./configs/shuffle_vit_base_patch4_window7_224.yaml' \
  -dataset='imagenet2012' \
  -batch_size=32 \
  -data_path='/dataset/imagenet' \
Run training using multi-GPUs:
sh run_train_multi.sh

or

CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
    -cfg='./configs/shuffle_vit_base_patch4_window7_224.yaml' \
    -dataset='imagenet2012' \
    -batch_size=32 \
    -data_path='/dataset/imagenet' \

Visualization Attention Map

(coming soon)

Reference

@article{huang2021shuffle,
  title={Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer},
  author={Huang, Zilong and Ben, Youcheng and Luo, Guozhong and Cheng, Pei and Yu, Gang and Fu, Bin},
  journal={arXiv preprint arXiv:2106.03650},
  year={2021}
}