Mobile-Former: Bridging MobileNet and Transformer, arxiv
PaddlePaddle training/validation code for MobileFormer.
This implementation is developed by PaddleViT.
![]() |
![]() |
- Update(2021-11-26): Code is released.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
mobileformer_26m | * | * | 3.227M | 26M± | 224 | 0.875 | bicubic | * |
mobileformer_52m | * | * | 3.513M | 52M± | 224 | 0.875 | bicubic | * |
mobileformer_96m | * | * | 4.595M | 96M± | 224 | 0.875 | bicubic | * |
mobileformer_151m | * | * | 7.616M | 151M± | 224 | 0.875 | bicubic | * |
mobileformer_214m | * | * | 9.416M | 214M± | 224 | 0.875 | bicubic | * |
mobileformer_294m | * | * | 11.392M | 294M± | 224 | 0.875 | bicubic | * |
mobileformer_508m | * | * | 14.013M | 508M± | 224 | 0.875 | bicubic | * |
*The results are evaluated on ImageNet2012 validation set.
(coming soon)
We provide a few notebooks in aistudio to help you get started:
(coming soon)
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset
is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./mobileformer_26m.pdparams
, to use the mobileformer_26m
model in python:
from config import get_config
from mobileformer import build_mformer as build_model
# config files in ./configs/
config = get_config('./configs/mobileformer_26m.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./mobileformer_26m')
model.set_dict(model_state_dict)
To evaluate MobileFormer
model performance on ImageNet2012 with a single GPU
, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/mobileformer_26m.yaml' \
-dataset='imagenet2012' \
-num_classes=1000 \
-batch_size=64 \
-image_size=224 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./mobileformer_26m'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/mobileformer_26m.yaml' \
-dataset='imagenet2012' \
-num_classes=1000 \
-batch_size=32 \
-image_size=224 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./mobileformer_26m'
To train the MobileFormer
model on ImageNet2012 with single GPU
, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/mobileformer_26m.yaml' \
-dataset='imagenet2012' \
-num_classes=1000 \
-batch_size=32 \
-image_size=224 \
-data_path='/dataset/imagenet' \
-output='./output'
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_single_gpu.py \
-cfg='./configs/mobileformer_26m.yaml' \
-dataset='imagenet2012' \
-num_classes=1000 \
-batch_size=4 \
-image_size=224 \
-data_path='/dataset/imagenet' \
-output='./output'
-cfg
: path of model config file (.yaml), stored in./configs
.-dataset
: dataset name, e.g.,imagenet2012
,cifar10
,cifar100
.-data_path
: dataset folder path-batch_size
: batch size,default:32
.-image_size
: input image size,default224
.-num_classes
: number of classes, default:1000
.-output
: output folder for storing weights and logs,default:./output
.-pretrained
: pretrain model weights file path, (.pdparams
file ext is NOT needed) default:None
.-resume
: resume model weight and opt file path, (.paparams
and.pdopts
file ext are NOT needed, default:None
.-last_epoch
: start epoch,default:None
.-save_freq
: number of epochs to save checkpoint,default:1
.-log_freq
: number of iters to print logging,default:100
.-validate_freq
: number of epochs to do validation during training,default:10
.-accum_iter
: number of iteration for iter accumulation, default: 1.-num_workers
: number of workers for data loading,default:1
.-ngpus
: number of GPUs to use,you can control GPUs by CUDA_VISIBLE_DEVICES, just set this to -1 default:-1
.-eval
: start eval mode.-amp
: start amp training.
-cfg
,-dataset
and-data_path
inmain_single_gpu.py
andmain_multi_gpu.py
are MUST-HAVE settings.
(coming soon)
@misc{chen2021mobileformer,
title={Mobile-Former: Bridging MobileNet and Transformer},
author={Yinpeng Chen and Xiyang Dai and Dongdong Chen and Mengchen Liu and Xiaoyi Dong and Lu Yuan and Zicheng Liu},
year={2021},
eprint={2108.05895},
archivePrefix={arXiv},
primaryClass={cs.CV}
}