BEiT: BERT Pre-Training of Image Transformers, arxiv
PaddlePaddle training/validation code and pretrained models for BEiT.
The official and 3rd party pytorch implementation are here.
This implementation is developed by PaddleViT.
- Update (2021-10-19): Bug fix and weights links are updated.
- Update (2021-09-27): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
beit_base_patch16_224 | 85.21 | 97.66 | 87M | 12.7G | 224 | 0.9 | bicubic | google/baidu(fshn) |
beit_base_patch16_384 | 86.81 | 98.14 | 87M | 37.3G | 384 | 1.0 | bicubic | google/baidu(arvc) |
beit_large_patch16_224 | 87.48 | 98.30 | 304M | 45.0G | 224 | 0.9 | bicubic | google/baidu(2ya2) |
beit_large_patch16_384 | 88.40 | 98.60 | 304M | 131.7G | 384 | 1.0 | bicubic | google/baidu(qtrn) |
beit_large_patch16_512 | 88.60 | 98.66 | 304M | 234.0G | 512 | 1.0 | bicubic | google/baidu(567v) |
*The results are evaluated on ImageNet2012 validation set.
*These models have been fine-tuned (ImageNet 22k -> 1k)
Note: BEiT weights are ported from here
We provide a few notebooks in aistudio to help you get started:
*(coming soon)*
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./beit_base_patch16_224_ft22kto1k.pdparams
, to use the beit_base_patch16_224_ft22kto1k
model in python:
from config import get_config
from beit import build_beit as build_model
# config files in ./configs/
config = get_config('./configs/beit_base_patch16_224.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./beit_base_patch16_224_ft22kto1k')
model.set_dict(model_state_dict)
To evaluate BEiT model performance on ImageNet2012 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/beit_base_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./beit_base_patch16_224_ft22kto1k'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/beit_base_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./beit_base_patch16_224_ft22kto1k'
To train the BEiT Transformer model on ImageNet2012 with single GPUs, run the following script using command line:
sh run_train.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/beit_base_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=32 \
-data_path='/dataset/imagenet' \
Run training using multi-GPUs:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/beit_base_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
(coming soon)
@article{beit,
title={{BEiT}: {BERT} Pre-Training of Image Transformers},
author={Hangbo Bao and Li Dong and Furu Wei},
year={2021},
eprint={2106.08254},
archivePrefix={arXiv},
primaryClass={cs.CV}
}