forked from BR-IDL/PaddleViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_pytorch_weights.py
356 lines (270 loc) · 11.5 KB
/
load_pytorch_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append('/root/.cache/torch/hub/facebookresearch_detr_master/util/')
#from misc import NestedTensor as ThNestedTensor
import os
import argparse
import numpy as np
import paddle
import torch
from config import get_config
from pvtv2_det import build_pvtv2_det
from model_utils import DropPath
#from pvt_det_pth.PVT.detection
#import timm
#from transformer import *
#from config import *
#from detr import build_detr
from utils import NestedTensor
from misc import NestedTensor as ThNestedTensor
import misc as th_utils
#config = get_config()
#parser = argparse.ArgumentParser('')
#parser.add_argument('-cfg', type=str, default='./configs/vit_large_patch16_224.yaml')
##parser.add_argument('-dataset', type=str, default="imagenet2012")
#parser.add_argument('-dataset', type=str, default="cifar10")
#parser.add_argument('-batch_size', type=int, default=4)
#parser.add_argument('-image_size', type=int, default=224)
#parser.add_argument('-data_path', type=str, default='/dataset/imagenet/')
#parser.add_argument('-eval', action="store_true")
#parser.add_argument('-pretrained', type=str, default=None)
#args = parser.parse_args()
#
#config = get_config()
#config = update_config(config, args)
#print(config)
config = get_config('./configs/pvtv2_b0.yaml')
def print_model_named_params(model):
for name, param in model.named_parameters():
print(name, param.shape)
def print_model_named_buffers(model):
for name, buff in model.named_buffers():
print(name, buff.shape)
def torch_to_paddle_mapping():
map1 = torch_to_paddle_mapping_backbone()
map2 = torch_to_paddle_mapping_neck()
map3 = torch_to_paddle_mapping_head()
map1.extend(map2)
map1.extend(map3)
return map1
def torch_to_paddle_mapping_neck():
mapping = []
for i in range(len(config.MODEL.TRANS.OUT_INDICES)):
th_prefix = f'neck.lateral_convs.{i}.conv'
pp_prefix = f'neck.fpn_lateral{i+2}.conv'
mapping.append((th_prefix, pp_prefix))
th_prefix = f'neck.fpn_convs.{i}.conv'
pp_prefix = f'neck.fpn_output{i+2}.conv'
mapping.append((th_prefix, pp_prefix))
return mapping
def torch_to_paddle_mapping_head():
mapping = [
('rpn_head.rpn_conv', 'rpnhead.conv'),
('rpn_head.rpn_cls', 'rpnhead.objectness_logits'),
('rpn_head.rpn_reg', 'rpnhead.anchor_deltas'),
('roi_head.bbox_head.fc_cls', 'roihead.predictor.cls_fc'),
('roi_head.bbox_head.fc_reg', 'roihead.predictor.reg_fc'),
('roi_head.bbox_head.shared_fcs.0', 'roihead.predictor.forward_net.linear0'),
('roi_head.bbox_head.shared_fcs.1', 'roihead.predictor.forward_net.linear1'),
]
# Add mask head
return mapping
def torch_to_paddle_mapping_backbone():
mapping = []
for embed_idx in range(1, 5):
th_embed_prefix = f'backbone.patch_embed{embed_idx}'
pp_embed_prefix = f'backbone.patch_embedding{embed_idx}'
mapping.append((f'{th_embed_prefix}.proj',
f'{pp_embed_prefix}.patch_embed'))
mapping.append((f'{th_embed_prefix}.norm',
f'{pp_embed_prefix}.norm'))
for i in range(5):
mapping.append((f'backbone.norm{i}',
f'backbone.norm{i}'))
block_depth = config.MODEL.TRANS.STAGE_DEPTHS # [2, 2, 2, 2]
for block_idx in range(1, len(block_depth) + 1):
th_block_prefix = f'backbone.block{block_idx}'
pp_block_prefix = f'backbone.block{block_idx}'
for layer_idx in range(block_depth[block_idx-1]):
th_prefix = f'{th_block_prefix}.{layer_idx}'
pp_prefix = f'{pp_block_prefix}.{layer_idx}'
layer_mapping = [
(f'{th_prefix}.norm1', f'{pp_prefix}.norm1'),
(f'{th_prefix}.attn.q', f'{pp_prefix}.attn.q'),
(f'{th_prefix}.attn.kv', f'{pp_prefix}.attn.kv'),
(f'{th_prefix}.attn.proj', f'{pp_prefix}.attn.proj'),
(f'{th_prefix}.attn.sr', f'{pp_prefix}.attn.sr'),
(f'{th_prefix}.attn.norm', f'{pp_prefix}.attn.norm'),
(f'{th_prefix}.norm2', f'{pp_prefix}.norm2'),
(f'{th_prefix}.mlp.fc1', f'{pp_prefix}.mlp.fc1'),
(f'{th_prefix}.mlp.fc2', f'{pp_prefix}.mlp.fc2'),
(f'{th_prefix}.mlp.dwconv.dwconv', f'{pp_prefix}.mlp.dwconv.dwconv'),
]
mapping.extend(layer_mapping)
return mapping
def convert_from_torch_state_dict(torch_model_state_dict, paddle_model):
def _set_value(th_name, pd_name, transpose=True):
th_shape = th_params[th_name].shape
pd_shape = tuple(pd_params[pd_name].shape) # paddle shape default type is list
#assert th_shape == pd_shape, f'{th_shape} != {pd_shape}'
print(f'***SET*** {th_name} {th_shape} ***TO*** {pd_name} {pd_shape}')
if isinstance(th_params[th_name], torch.nn.parameter.Parameter):
value = th_params[th_name].data.numpy()
else:
value = th_params[th_name].numpy()
if len(value.shape) == 2 and transpose:
value = value.transpose((1, 0))
pd_params[pd_name].set_value(value)
# 1. get paddle and torch model parameters
pd_params = {}
for name, param in paddle_model.named_parameters():
pd_params[name] = param
for name, buff in paddle_model.named_buffers():
pd_params[name] = buff
th_params = torch_model_state_dict
# 2. get name mapping pairs
mapping = torch_to_paddle_mapping()
# 3. set torch param values to paddle params: may needs transpose on weights
for th_name, pd_name in mapping:
if th_name in th_params.keys(): # nn.Parameters
_set_value(th_name, pd_name)
else: # weight & bias
if f'{th_name}.weight' in th_params.keys():
th_name_w = f'{th_name}.weight'
pd_name_w = f'{pd_name}.weight'
_set_value(th_name_w, pd_name_w)
if f'{th_name}.bias' in th_params.keys():
th_name_b = f'{th_name}.bias'
pd_name_b = f'{pd_name}.bias'
_set_value(th_name_b, pd_name_b)
return paddle_model
def get_nested_tensors():
with open('./t.npy', 'rb') as infile:
t = np.load(infile)
m = np.load(infile)
gts = np.load(infile, allow_pickle=True).item()
#print(t.shape)
#print(m.shape)
tt = torch.Tensor(t)
mm = torch.Tensor(m)
th_in = th_utils.NestedTensor(tt, mm)
ttt = paddle.to_tensor(t)
mmm = paddle.to_tensor(m)
pp_in = NestedTensor(ttt, mmm)
#print(th_in, th_in.tensors.shape)
#print(pp_in, pp_in.tensors.shape)
targets = {}
for key, gt in gts.items():
targets[key] = []
for val in gt:
targets[key].append(paddle.to_tensor(val))
pp_gt = targets
return pp_in, th_in, pp_gt
#def get_nested_tensors():
# samples = paddle.load(path='./batch_samples_01.pdtensor')
# pp_in = NestedTensor(samples['tensors'], samples['mask'])
# pp_target = paddle.load(path='./batch_targets_01.pdtensor')
#
# samples_tensor = samples['tensors'].cpu().numpy()
# samples_mask = samples['mask'].cpu().numpy()
# th_tensor = torch.Tensor(samples_tensor)
# th_mask = torch.Tensor(samples_mask)
# th_in = ThNestedTensor(th_tensor, th_mask)
# th_target = []
# for item in pp_target:
# sample_gt = dict()
# for key, val in item.items():
# th_tensor = torch.Tensor(val.cpu().numpy())
# sample_gt[key] = th_tensor
# th_target.append(sample_gt)
#
# return th_in, th_target, pp_in, pp_target
def get_nested_tensors_random():
x = np.random.randn(1, 3, 224, 224).astype('float32')
mask = np.ones([1, 224, 224])
pp_x = paddle.to_tensor(x)
pp_mask = paddle.to_tensor(mask)
pp_in = NestedTensor(pp_x, pp_mask)
th_tensor = torch.Tensor(x)
th_mask = torch.Tensor(mask)
th_in = ThNestedTensor(th_tensor, th_mask)
th_target = []
pp_target = []
return th_in, th_target, pp_in, pp_target
def main():
paddle.set_device('cpu')
#th_in, th_target, pp_in, pp_target = get_nested_tensors()
paddle_model = build_pvtv2_det(config)
paddle_model.eval()
print_model_named_params(paddle_model)
print_model_named_buffers(paddle_model)
print('------------paddle model finish ----------------------')
#device = torch.device('cpu')
#torch_model =
#torch_model = torch_model.to(device)
#torch_model.eval()
#print_model_named_params(torch_model)
#print_model_named_buffers(torch_model)
#print('----------torch model finish------------------------')
torch_state_dict = torch.load('./pth_weights/mask_rcnn_pvt_v2_b0_fpn_1x_coco.pth')
# dict_keys(['meta', 'state_dict', 'optimizer'])
for key, val in torch_state_dict['state_dict'].items():
print(key, val.shape)
print('----------torch model finish------------------------')
torch_model_state_dict = torch_state_dict['state_dict']
# convert weights
paddle_model = convert_from_torch_state_dict(torch_model_state_dict, paddle_model)
# check correctness
#th_in, th_target, pp_in, pp_target = get_nested_tensors()
#th_in, th_target, pp_in, pp_target = get_nested_tensors_random()
#x = np.random.randn(1, 3, 224, 224).astype('float32')
#x_paddle = paddle.to_tensor(x)
#x_torch = torch.Tensor(x).to(device)
#print(pp_in.tensors)
#print(pp_in.mask)
#print('-------- pp in finish ------------------')
#print(th_in.tensors, th_in.tensors.shape)
#print(th_in.mask, th_in.mask.shape)
#print('-------- th in finish ------------------')
# save weights for paddle model
model_path = os.path.join('./pvtv2_b0_maskrcnn.pdparams')
paddle.save(paddle_model.state_dict(), model_path)
# pp_in, th_in, pp_gt = get_nested_tensors()
# print('pp_in: ', pp_in.tensors.shape)
# out_paddle = paddle_model(pp_in, pp_gt)
# print('paddle_out = ', out_paddle)
#loss = paddle_criterion(out_paddle, pp_gt)
#print('=============== loss =============')
#for key, val in loss.items():
# print(key, val.cpu().numpy())
#print(out_paddle['pred_logits'], out_paddle['pred_logits'].shape)
#print(out_paddle['pred_boxes'], out_paddle['pred_boxes'].shape)
#print('---------- paddle out finish ------------------------')
#out_torch = torch_model(th_in)
#print(out_torch['pred_logits'], out_torch['pred_logits'].shape)
#print(out_torch['pred_boxes'], out_torch['pred_boxes'].shape)
#print('---------- torch out finish ------------------------')
#out_torch = out_torch.data.cpu().numpy()
#out_paddle = out_paddle.cpu().numpy()
#print(out_torch.shape, out_paddle.shape)
#print(out_torch[0:100])
#print(out_paddle[0:100])
#assert np.allclose(out_torch, out_paddle, atol = 1e-5)
#
# save weights for paddle model
#model_path = os.path.join('./detr_resnet50.pdparams')
#paddle.save(paddle_model.state_dict(), model_path)
if __name__ == "__main__":
main()