forked from BR-IDL/PaddleViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_single_gpu.py
321 lines (278 loc) · 14 KB
/
main_single_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import time
import logging
import argparse
import random
import numpy as np
import paddle
import paddle.nn.functional as F
import paddle.distributed as dist
from coco import build_coco
from coco import get_dataloader
from coco_eval import CocoEvaluator
from detr import build_detr
from config import get_config
from config import update_config
from utils import WarmupCosineScheduler
from utils import AverageMeter
parser = argparse.ArgumentParser('DETR')
parser.add_argument('-cfg', type=str, default='./configs/detr_resnet50.yaml')
parser.add_argument('-dataset', type=str, default="coco")
parser.add_argument('-batch_size', type=int, default=4)
parser.add_argument('-data_path', type=str, default='/dataset/coco/')
parser.add_argument('-backbone', type=str, default=None)
parser.add_argument('-ngpus', type=int, default=None)
parser.add_argument('-pretrained', type=str, default=None)
parser.add_argument('-resume', type=str, default=None)
parser.add_argument('-last_epoch', type=int, default=None)
parser.add_argument('-eval', action='store_true')
args = parser.parse_args()
log_format = "%(asctime)s %(message)s"
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt="%m%d %I:%M:%S %p")
config = get_config()
config = update_config(config, args)
if not config.EVAL:
config.SAVE = '{}/train-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
else:
config.SAVE = '{}/eval-{}'.format(config.SAVE, time.strftime('%Y%m%d-%H-%M-%S'))
config.freeze()
if not os.path.exists(config.SAVE):
os.makedirs(config.SAVE, exist_ok=True)
logger = logging.getLogger()
fh = logging.FileHandler(os.path.join(config.SAVE, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logger.addHandler(fh)
logger.info(f'config= {config}')
def train(dataloader, model, criterion, postprocessors, base_ds, optimizer, epoch, total_batch, debug_steps=100, accum_iter=1):
model.train()
criterion.train()
train_loss_ce_meter = AverageMeter()
train_loss_bbox_meter = AverageMeter()
train_loss_giou_meter = AverageMeter()
time_st = time.time()
iou_types = ('bbox', )
coco_evaluator = CocoEvaluator(base_ds, iou_types)
for batch_id, data in enumerate(dataloader):
samples = data[0]
targets = data[1]
#targets = [{k:v for k,v in t.items()} for t in targets]
outputs = model(samples)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
losses.backward()
if ((batch_id +1) % accum_iter == 0) or (batch_id + 1 == len(dataloader)):
optimizer.step()
optimizer.clear_grad()
# logging losses
batch_size = samples.tensors.shape[0]
train_loss_ce_meter.update(loss_dict['loss_ce'].numpy()[0], batch_size)
train_loss_bbox_meter.update(loss_dict['loss_bbox'].numpy()[0], batch_size)
train_loss_giou_meter.update(loss_dict['loss_giou'].numpy()[0], batch_size)
if batch_id > 0 and batch_id % debug_steps == 0:
logger.info(
f"Train Step[{batch_id:04d}/{total_batch:04d}], " +
f"Avg loss_ce: {train_loss_ce_meter.avg:.4f}, " +
f"Avg loss_bbox: {train_loss_bbox_meter.avg:.4f}, " +
f"Avg loss_giou: {train_loss_giou_meter.avg:.4f}, ")
train_time = time.time() - time_st
return train_loss_ce_meter.avg, train_loss_bbox_meter.avg, train_loss_giou_meter.avg, train_time
def validate(dataloader, model, criterion, postprocessors, base_ds, total_batch, debug_steps=100):
model.eval()
criterion.eval()
val_loss_ce_meter = AverageMeter()
val_loss_bbox_meter = AverageMeter()
val_loss_giou_meter = AverageMeter()
time_st = time.time()
iou_types = ('bbox', )
coco_evaluator = CocoEvaluator(base_ds, iou_types)
with paddle.no_grad():
for batch_id, data in enumerate(dataloader):
samples = data[0]
targets = data[1]
#targets = [{k:v for k,v in t.items()} for t in targets]
outputs = model(samples)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
# logging val losses
batch_size = samples.tensors.shape[0]
val_loss_ce_meter.update(loss_dict['loss_ce'].numpy()[0], batch_size)
val_loss_bbox_meter.update(loss_dict['loss_bbox'].numpy()[0], batch_size)
val_loss_giou_meter.update(loss_dict['loss_giou'].numpy()[0], batch_size)
if batch_id > 0 and batch_id % debug_steps == 0:
logger.info(
f"Val Step[{batch_id:04d}/{total_batch:04d}], " +
f"Avg loss_ce: {val_loss_ce_meter.avg:.4f}, " +
f"Avg loss_bbox: {val_loss_bbox_meter.avg:.4f}, " +
f"Avg loss_giou: {val_loss_giou_meter.avg:.4f}, ")
# coco evaluate
orig_target_sizes = paddle.stack([t['orig_size'] for t in targets], axis=0)
results = postprocessors['bbox'](outputs, orig_target_sizes)
#res = {target['image_id'].cpu().numpy()[0]: output for target, output in zip(targets, results)}
res = {target['image_id']: output for target, output in zip(targets, results)}
if coco_evaluator is not None:
coco_evaluator.update(res)
if coco_evaluator is not None:
coco_evaluator.synchronize_between_processes()
coco_evaluator.accumulate()
coco_evaluator.summarize() #TODO: get stats[0] and return mAP
val_time = time.time() - time_st
return val_loss_ce_meter.avg, val_loss_bbox_meter.avg, val_loss_giou_meter.avg, val_time
def main():
# 0. Preparation
last_epoch = config.TRAIN.LAST_EPOCH
seed = config.SEED
paddle.seed(seed)
np.random.seed(seed)
random.seed(seed)
# TODO: set backbone_lr
# 1. Create model and criterion
model, criterion, postprocessors = build_detr(config)
# 2. Create train and val dataloader
if not config.EVAL:
dataset_train = build_coco('train', config.DATA.DATA_PATH)
dataloader_train = get_dataloader(dataset_train,
batch_size=config.DATA.BATCH_SIZE,
mode='train',
multi_gpu=False)
dataset_val = build_coco('val', config.DATA.DATA_PATH)
dataloader_val = get_dataloader(dataset_val,
batch_size=config.DATA.BATCH_SIZE_EVAL,
mode='val',
multi_gpu=False)
base_ds = dataset_val.coco # pycocotools.coco.COCO(anno_file)
# 3. Define lr_scheduler
scheduler = None
if config.TRAIN.LR_SCHEDULER.NAME == "warmupcosine":
scheduler = WarmupCosineScheduler(learning_rate=config.TRAIN.BASE_LR,
warmup_start_lr=config.TRAIN.WARMUP_START_LR,
start_lr=config.TRAIN.BASE_LR,
end_lr=config.TRAIN.END_LR,
warmup_epochs=config.TRAIN.WARMUP_EPOCHS,
total_epochs=config.TRAIN.NUM_EPOCHS,
last_epoch=config.TRAIN.LAST_EPOCH,
)
elif config.TRAIN.LR_SCHEDULER.NAME == "cosine":
scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=config.TRAIN.BASE_LR,
T_max=config.TRAIN.NUM_EPOCHS,
last_epoch=last_epoch)
elif config.scheduler == "multi-step":
milestones = [int(v.strip()) for v in config.TRAIN.LR_SCHEDULER.MILESTONES.split(",")]
scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=config.TRAIN.BASE_LR,
milestones=milestons,
gamma=config.TRAIN.LR_SCHEDULER.DECAY_RATE,
last_epoch=last_epoch)
else:
logging.fatal(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
raise NotImplementedError(f"Unsupported Scheduler: {config.TRAIN.LR_SCHEDULER}.")
# 5. Define optimizer
if config.TRAIN.OPTIMIZER.NAME == "SGD":
if config.TRAIN.GRAD_CLIP:
clip = paddle.nn.ClipGradByGlobalNorm(config.TRAIN.GRAD_CLIP)
else:
clip = None
optimizer = paddle.optimizer.Momentum(parameters=model.parameters(),
learning_rate=scheduler if scheduler is not None else config.TRAIN.BASE_LR,
weight_decay=config.TRAIN.WEIGHT_DECAY,
momentum=config.TRAIN.OPTIMIZER.MOMENTUM,
grad_clip=clip,
)
elif config.TRAIN.OPTIMIZER.NAME == "AdamW":
optimizer = paddle.optimizer.AdamW(parameters=model.parameters(),
beta1=config.TRAIN.OPTIMIZER.BETAS[0],
beta2=config.TRAIN.OPTIMIZER.BETAS[1],
epsilon=config.TRAIN.OPTIMIZER.EPS,
)
else:
logging.fatal(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
raise NotImplementedError(f"Unsupported Optimizer: {config.TRAIN.OPTIMIZER.NAME}.")
# 6. Load pretrained model or load resume model and optimizer states
if config.MODEL.PRETRAINED:
#if config.MODEL.PRETRAINED and os.path.isfile(config.MODEL.PRETRAINED + '.pdparams'):
assert os.path.isfile(config.MODEL.PRETRAINED + '.pdparams')
model_state = paddle.load(config.MODEL.PRETRAINED+'.pdparams')
model.set_dict(model_state)
logger.info(f"----- Pretrained: Load model state from {config.MODEL.PRETRAINED}")
if config.MODEL.RESUME and os.path.isfile(config.MODEL.RESUME+'.pdparams') and os.path.isfile(config.MODEL.RESUME+'.pdopt'):
model_state = paddle.load(config.MODEL.RESUME+'.pdparams')
model.set_dict(model_state)
opt_state = paddle.load(config.MODEL.RESUME+'.pdopt')
optimizer.set_dict(opt_state)
logger.info(f"----- Resume Training: Load model and optmizer states from {config.MODEL.RESUME}")
# 7. Validation
if config.EVAL:
logger.info(f'----- Start Validating')
val_loss_ce, val_loss_bbox, val_loss_giou, val_time = validate(
dataloader=dataloader_val,
model=model,
criterion=criterion,
postprocessors=postprocessors,
base_ds=base_ds,
total_batch=len(dataloader_val),
debug_steps=config.REPORT_FREQ)
logger.info(f"Validation Loss ce: {val_loss_ce:.4f}, " +
f"Validation Loss bbox: {val_loss_bbox:.4f}, " +
f"Validation Loss giou: {val_loss_giou:.4f}, " +
f"time: {val_time:.2f}")
return
# 8. Start training and validation
logging.info(f"Start training from epoch {last_epoch+1}.")
for epoch in range(last_epoch+1, config.TRAIN.NUM_EPOCHS+1):
# train
logging.info(f"Now training epoch {epoch}. LR={optimizer.get_lr():.6f}")
train_loss_ce, train_loss_bbox, train_loss_giou, train_time = train(
dataloader=dataloader_train,
model=model,
criterion=criterion,
postprocessors=postprocessors,
base_ds=base_ds,
optimizer=optimizer,
epoch=epoch,
total_batch=len(dataloader_train),
debug_steps=config.REPORT_FREQ,
accum_iter=config.TRAIN.ACCUM_ITER)
scheduler.step()
logger.info(f"----- Epoch[{epoch:03d}/{config.TRAIN.NUM_EPOCHS:03d}], " +
f"Train Loss ce: {train_loss_ce:.4f}, " +
f"Train Loss bbox: {train_loss_bbox:.4f}, " +
f"Train Loss giou: {train_loss_giou:.4f}, " +
f"time: {train_time:.2f}")
# validation
if epoch % config.VALIDATE_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
logger.info(f'----- Validation after Epoch: {epoch}')
val_loss_ce, val_loss_bbox, val_loss_giou, val_time = validate(
dataloader=dataloader_val,
model=model,
criterion=criterion,
postprocessors=postprocessors,
base_ds=base_ds,
total_batch=len(dataloader_val),
debug_steps=config.REPORT_FREQ)
logger.info(f"Validation Loss ce: {val_loss_ce:.4f}, " +
f"Validation Loss bbox: {val_loss_bbox:.4f}, " +
f"Validation Loss giou: {val_loss_giou:.4f}, " +
f"time: {val_time:.2f}")
# model save
if epoch % config.SAVE_FREQ == 0 or epoch == config.TRAIN.NUM_EPOCHS:
model_path = os.path.join(config.SAVE, f"{config.MODEL.TYPE}-Epoch-{epoch}-Loss-{train_loss}")
paddle.save(model.state_dict(), model_path)
paddle.save(optimizer.state_dict(), model_path)
logger.info(f"----- Save model: {model_path}.pdparams")
logger.info(f"----- Save optim: {model_path}.pdopt")
if __name__ == "__main__":
main()