forked from BR-IDL/PaddleViT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_pytorch_weights.py
executable file
·138 lines (111 loc) · 4.59 KB
/
load_pytorch_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from image_classification.CrossViT.models.crossvit import *
import os
import torch
import numpy as np
from image_classification.CrossViT.crossvit import *
def print_model_named_params(model):
print('----------------------------------')
for name, param in model.named_parameters():
print(name, param.shape)
print('----------------------------------')
def print_model_named_buffers(model):
print('----------------------------------')
for name, param in model.named_buffers():
print(name, param.shape)
print('----------------------------------')
def perpare_mapping(paddle_model,torch_model):
mapping=[]
for (name, param),(name2, param2) in zip(paddle_model.named_parameters(),torch_model.named_parameters()):
layer_mapping = [
(name2, name)
]
mapping.extend(layer_mapping)
return mapping
def convert(torch_model, paddle_model):
def _set_value(th_name, pd_name, transpose=True):
th_shape = th_params[th_name].shape
pd_shape = tuple(pd_params[pd_name].shape) # paddle shape default type is list
# assert th_shape == pd_shape, f'{th_shape} != {pd_shape}'
print(f'**SET** {th_name} {th_shape} **TO** {pd_name} {pd_shape}')
if isinstance(th_params[th_name], torch.nn.parameter.Parameter):
value = th_params[th_name].data.numpy()
else:
value = th_params[th_name].numpy()
if len(value.shape) == 2 and transpose:
value = value.transpose((1, 0))
pd_params[pd_name].set_value(value)
# 1. get paddle and torch model parameters
pd_params = {}
th_params = {}
for name, param in paddle_model.named_parameters():
pd_params[name] = param
for name, param in torch_model.named_parameters():
th_params[name] = param
for name, param in paddle_model.named_buffers():
pd_params[name] = param
for name, param in torch_model.named_buffers():
th_params[name] = param
# 2. get name mapping pairs
mapping = perpare_mapping(paddle_model,torch_model)
# 3. set torch param values to paddle params: may needs transpose on weights
for th_name, pd_name in mapping:
if th_name in th_params.keys(): # nn.Parameters
_set_value(th_name, pd_name)
else: # weight & bias
th_name_w = f'{th_name}.weight'
pd_name_w = f'{pd_name}.weight'
_set_value(th_name_w, pd_name_w)
if f'{th_name}.bias' in th_params.keys():
th_name_b = f'{th_name}.bias'
pd_name_b = f'{pd_name}.bias'
_set_value(th_name_b, pd_name_b)
return paddle_model
def main():
paddle.set_device('cpu')
paddle_model = pd_crossvit_base_224()
paddle_model.eval()
print_model_named_params(paddle_model)
print_model_named_buffers(paddle_model)
print('+++++++++++++++++++++++++++++++++++')
device = torch.device('cpu')
torch_model =crossvit_base_224(pretrained=True)
torch_model = torch_model.to(device)
torch_model.eval()
print_model_named_params(torch_model)
print_model_named_buffers(torch_model)
# convert weights
paddle_model = convert(torch_model, paddle_model)
print("model convert done...")
# check correctness
x = np.random.randn(2, 3, 224, 224).astype('float32')
x_paddle = paddle.to_tensor(x)
x_torch = torch.Tensor(x).to(device)
out_torch = torch_model(x_torch)
print('torch infer done...')
out_paddle = paddle_model(x_paddle)
out_torch = out_torch.data.cpu().numpy()
out_paddle = out_paddle.cpu().numpy()
print(out_torch.shape, out_paddle.shape)
print(out_torch[0, 0:100])
print('========================================================')
print(out_paddle[0, 0:100])
assert np.allclose(out_torch, out_paddle, atol=1e-4)
# save weights for paddle model
model_path = os.path.join('./pd_crossvit_base_224.pdparams')
paddle.save(paddle_model.state_dict(), model_path)
print('all done')
if __name__ == "__main__":
main()