forked from torchgan/torchgan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-trainer.py
66 lines (62 loc) · 3.37 KB
/
test-trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import unittest
import torch
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
import torchvision
from torch.optim import Adam
import torch.utils.data as data
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torchgan.metrics import *
from torchgan import *
from torchgan.models import *
from torchgan.losses import *
from torchgan.trainer import Trainer
def mnist_dataloader():
train_dataset = dsets.MNIST(root='./mnist', train=True,
transform=transforms.Compose([transforms.Pad((2, 2)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5))]), download=True)
train_loader = data.DataLoader(train_dataset, batch_size=128, shuffle=True)
return train_loader
class TestTrainer(unittest.TestCase):
def test_trainer_dcgan(self):
network_params = {
"generator": {"name": DCGANGenerator, "args": {"out_channels": 1, "step_channels": 4},
"optimizer": {"name": Adam, "args": {"lr": 0.0002, "betas": (0.5, 0.999)}}},
"discriminator": {"name": DCGANDiscriminator, "args": {"in_channels": 1, "step_channels": 4},
"optimizer": {"name": Adam, "args": {"lr": 0.0002, "betas": (0.5, 0.999)}}}
}
losses_list = [MinimaxGeneratorLoss(), MinimaxDiscriminatorLoss()]
trainer = Trainer(network_params, losses_list, sample_size=1, epochs=1,
device=torch.device('cpu'))
trainer(mnist_dataloader())
def test_trainer_cgan(self):
network_params = {
"generator": {"name": ConditionalGANGenerator, "args": {"num_classes": 10,
"out_channels": 1, "step_channels": 4}, "optimizer": {"name": Adam,
"args": {"lr": 0.0002, "betas": (0.5, 0.999)}}},
"discriminator": {"name": ConditionalGANDiscriminator, "args": {"num_classes": 10,
"in_channels": 1, "step_channels": 4}, "optimizer": {"name": Adam,
"args": {"lr": 0.0002, "betas": (0.5, 0.999)}}}
}
losses_list = [MinimaxGeneratorLoss(), MinimaxDiscriminatorLoss()]
trainer = Trainer(network_params, losses_list, sample_size=1, epochs=1,
device=torch.device('cpu'))
trainer(mnist_dataloader())
def test_trainer_acgan(self):
network_params = {
"generator": {"name": ACGANGenerator, "args": {"num_classes": 10,
"out_channels": 1, "step_channels": 4}, "optimizer": {"name": Adam,
"args": {"lr": 0.0002, "betas": (0.5, 0.999)}}},
"discriminator": {"name": ACGANDiscriminator, "args": {"num_classes": 10,
"in_channels": 1, "step_channels": 4}, "optimizer": {"name": Adam,
"args": {"lr": 0.0002, "betas": (0.5, 0.999)}}}
}
losses_list = [MinimaxGeneratorLoss(), MinimaxDiscriminatorLoss(),
AuxiliaryClassifierGeneratorLoss(), AuxiliaryClassifierDiscriminatorLoss()]
trainer = Trainer(network_params, losses_list, sample_size=1, epochs=1,
device=torch.device('cpu'))
trainer(mnist_dataloader())