""" View more, visit my tutorial page: https://morvanzhou.github.io/tutorials/ My Youtube Channel: https://www.youtube.com/user/MorvanZhou Dependencies: torch: 0.1.11 numpy """ import torch import numpy as np # details about math operation in torch can be found in: http://pytorch.org/docs/torch.html#math-operations # convert numpy to tensor or vise versa np_data = np.arange(6).reshape((2, 3)) torch_data = torch.from_numpy(np_data) tensor2array = torch_data.numpy() print( '\nnumpy array:', np_data, # [[0 1 2], [3 4 5]] '\ntorch tensor:', torch_data, # 0 1 2 \n 3 4 5 [torch.LongTensor of size 2x3] '\ntensor to array:', tensor2array, # [[0 1 2], [3 4 5]] ) # abs data = [-1, -2, 1, 2] tensor = torch.FloatTensor(data) # 32-bit floating point print( '\nabs', '\nnumpy: ', np.abs(data), # [1 2 1 2] '\ntorch: ', torch.abs(tensor) # [1 2 1 2] ) # sin print( '\nsin', '\nnumpy: ', np.sin(data), # [-0.84147098 -0.90929743 0.84147098 0.90929743] '\ntorch: ', torch.sin(tensor) # [-0.8415 -0.9093 0.8415 0.9093] ) # mean print( '\nmean', '\nnumpy: ', np.mean(data), # 0.0 '\ntorch: ', torch.mean(tensor) # 0.0 ) # matrix multiplication data = [[1,2], [3,4]] tensor = torch.FloatTensor(data) # 32-bit floating point # correct method print( '\nmatrix multiplication (matmul)', '\nnumpy: ', np.matmul(data, data), # [[7, 10], [15, 22]] '\ntorch: ', torch.mm(tensor, tensor) # [[7, 10], [15, 22]] ) # incorrect method data = np.array(data) print( '\nmatrix multiplication (dot)', '\nnumpy: ', data.dot(data), # [[7, 10], [15, 22]] '\ntorch: ', tensor.dot(tensor) # this will convert tensor to [1,2,3,4], you'll get 30.0 )