forked from LAION-AI/Open-Assistant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimportance_selection.py
323 lines (292 loc) · 12 KB
/
importance_selection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import logging
import warnings
import numpy as np
import pandas as pd
import psycopg2
from scipy.optimize import LinearConstraint, minimize
from scipy.sparse import coo_array, csr_array, csr_matrix, hstack
from scipy.special import softmax
from tqdm import trange
from tqdm.contrib.logging import logging_redirect_tqdm
def least_squares_fit(features, target, scaling=1):
X = features # (features - np.mean(features, 0)) / np.std(features, 0)
# print("feature",X.shape)
# get target
y = target.reshape(-1)
# Use simple imputer for mean to not change the importance of tree split
# Create an instance of the ExtraTreesRegressor algorithm
zX = X.toarray()
summed_target = y # (y+zX[:,-1])/2
vote_matrix = csr_matrix(zX[:, :-1])
constraint = LinearConstraint(np.ones(X.shape[-1] - 1), 1 * scaling, 1 * scaling)
init = np.ones(X.shape[-1] - 1) # lsqr(vote_matrix,summed_target)[0]
init = init / np.linalg.norm(init)
result = minimize(
lambda x: np.sum((vote_matrix @ x - summed_target) ** 2),
init,
jac=lambda x: 2 * vote_matrix.T @ (vote_matrix @ x - summed_target),
constraints=constraint,
hess=lambda _: 2 * vote_matrix.T @ vote_matrix,
method="trust-constr",
)
# result = least_squares(residual, np.ones(X.shape[-1]-1))
# result = least_squares(zX[:,:-1], (y+zX[:,-1])/2,
# print(result)
return np.concatenate([result.x, np.ones(1)])
def get_df(study_label):
conn = psycopg2.connect("host=0.0.0.0 port=5432 user=postgres password=postgres dbname=postgres")
# Define the SQL query
query = (
"SELECT DISTINCT message_id, labels, message.user_id FROM text_labels JOIN message ON message_id = message.id;"
)
# Read the query results into a Pandas dataframe
df = pd.read_sql(query, con=conn)
print(df.head())
# Close the database connection
conn.close()
users = set()
messages = set()
for row in df.itertuples(index=False):
row = row._asdict()
users.add(str(row["user_id"]))
# for row in df.itertuples(index=False):
# row = row._asdict()
messages.add(str(row["message_id"]))
users = list(users)
messages = list(messages)
print("num users:", len(users), "num messages:", len(messages), "num in df", len(df))
# arr = np.full((len(messages), len(users)), np.NaN, dtype=np.half)
row_idx = []
col_idx = []
data = []
def swap(x):
return (x[1], x[0])
dct = dict(map(swap, enumerate(messages)))
print("converting messages...")
df["message_id"] = df["message_id"].map(dct)
print("converting users...")
df["user_id"] = df["user_id"].map(dict(map(swap, enumerate(users))))
print("converting labels...")
df["labels"] = df["labels"].map(lambda x: float(x.get(study_label, 0)))
row_idx = df["message_id"].to_numpy()
col_idx = df["user_id"].to_numpy()
data = df["labels"].to_numpy()
print(data)
print(row_idx)
print(col_idx)
""" for row in df.itertuples(index=False):
row = row._asdict()
labels = row["labels"]
value = labels.get(study_label, None)
if value is not None:
# tmp=out[str(row["message_id"])]
# tmp = np.array(tmp)
# tmp[users.index(row["user_id"])] = value
# out[str(row["message_id"])] = np.array(tmp)
# print(out[str(row["message_id"])].density)
row_idx.append(messages.index(str(row["message_id"])))
col_idx.append(users.index(str(row["user_id"])))
data.append(value)
#arr[mid, uid] = value """
arr = csr_array(coo_array((data, (row_idx, col_idx))))
print("results", len(users), arr.shape)
# df = pd.DataFrame.from_dict(out,orient="index")
print("generated dataframe")
return arr, messages, users
def reweight_features(features, weights, noise_scale=0.0):
# X = df.drop(target_col, axis=1)
# print("info",features.shape,weights.shape)
# X = (features - np.mean(features, 0).reshape(1,-1)) / np.std(features, 0).reshape(1,-1)
noise = np.random.randn(weights.shape[0]) * noise_scale
weights = weights + noise
# normalizer = (X.notna().astype(float) * weights).sum(skipna=True, axis=1)
values = features @ weights
# values = values / normalizer
return values
def get_subframe(arr, columns_to_filter):
# return np.delete(arr, columns_to_filter, axis=1)
"""
Remove the rows denoted by ``indices`` form the CSR sparse matrix ``mat``.
"""
if not isinstance(arr, csr_array):
raise ValueError("works only for CSR format -- use .tocsr() first")
indices = list(columns_to_filter)
mask = np.ones(arr.shape[1], dtype=bool)
mask[indices] = False
return arr[:, mask]
def sample_importance_weights(importance_weights, temperature=1.0):
weights = softmax(
abs(importance_weights) / temperature,
)
column = np.random.choice(len(importance_weights), p=weights)
return column
def make_random_testframe(num_rows, num_cols, frac_missing):
data = np.random.rand(num_rows, num_cols).astype(np.float16)
mask = np.random.rand(num_rows, num_cols) < frac_missing
data[mask] = np.nan
return data
def combine_underrepresented_columns(arr, num_instances):
# 1. get the mask
mask = arr != 0
to_combine = mask.sum(0) < num_instances
# print("to combine", mask.sum(0))
# print("combining", to_combine.astype(int).sum().tolist(), "many columns")
if not any(to_combine):
return arr
# mean = np.zeros(arr.shape[0])
# for i in to_combine.tolist():
# mean = np.nansum(np.stack(arr[:,i],mean),0)
# mean = mean/len(to_combine)
mean = np.mean(arr[:, to_combine], 1).reshape(-1, 1)
# print("mean shape",mean.shape)
dp = np.arange(len(to_combine))[to_combine]
# print("removing unused columns")
arr = get_subframe(arr, dp)
# print("subframe shape",arr.shape)
arr = hstack([arr, mean])
# print("out arr", arr.shape)
# print((mean==0).astype(int).sum())
return arr
def importance_votes(arr, to_fit=10, init_weight=None):
# arr = combine_underrepresented_columns(matrix,underrepresentation_thresh)
filtered_columns = []
weighter = None
if init_weight is None:
weighter = np.ones(arr.shape[1]) / arr.shape[1] # pd.Series(1.0, index=df.drop(columns=target).columns)
else:
weighter = init_weight
# print(arr.shape)
index = np.arange(arr.shape[1])
# subtract 1: the last one will always have maximal reduction!
bar = trange(to_fit)
target = np.ones(arr.shape[0])
for i in bar:
index = list(filter(lambda x: x not in filtered_columns, index))
# 0. produce target column:
# print("step 0")
target_old = target
target = reweight_features(arr, weighter)
error = np.mean((target - target_old) ** 2)
bar.set_description(f"expected error: {error}", refresh=True)
if error < 1e-10:
break
# 1. get a subframe of interesting features
# print("step 1")
# subframe = get_subframe(arr, filtered_columns)
# 2. compute feature importance
# print("step 2")
# importance_weights=None
# importance_weights = compute_feature_importance(arr, target, index)
weighter = least_squares_fit(arr, target)
# 3. sample column
# print("step 3")
# new_column = sample_importance_weights(importance_weights["importance"], temperature)
# new_column=index[new_column]
# value = importance_weights["importance"][new_column]
# print(weighter.shape, importance_weights["importance"].shape)
# weighter += alpha[i] * importance_weights["importance"].to_numpy()
# normalize to maintain the "1-voter one vote" total number of votes!
# weighter = weighter / sum(abs(weighter))
# stepsize = np.mean(abs(importance_weights["importance"].to_numpy()))
# bar.set_description(f"expected stepsize: {stepsize}", refresh=True)
# filtered_columns.append(new_column)
# print("new weight values", weighter)
return reweight_features(arr, weighter), weighter
def select_ids(arr, pick_frac, minima=(50, 500), folds=50, to_fit=200, frac=0.6):
"""
selects the top-"pick_frac"% of messages from "arr" after merging all
users with less than "minima" votes (minima increases linearly with each iteration from min to max).
The method returns all messages that are within `frac` many "minima" selection
"""
votes = []
minima = np.linspace(*minima, num=folds, dtype=int)
num_per_iter = int(arr.shape[0] * pick_frac)
writer_num = 0
tmp = None
for i in trange(folds):
tofit = combine_underrepresented_columns(arr, minima[i])
if tofit.shape[1] == writer_num:
print("already tested these writer counts, skipping and using cached value.....")
votes.append(tmp)
continue
writer_num = tofit.shape[1]
# print("arr shape", arr.shape)
init_weight = np.ones(tofit.shape[1]) / tofit.shape[1]
out, weight = importance_votes(tofit, init_weight=init_weight, to_fit=to_fit)
# print(i, "final weight")
# print(weight)
# mask =(out>thresh)
# out = np.arange(arr.shape[0])[mask]
indices = np.argpartition(out, -num_per_iter)[-num_per_iter:]
tmp = np.zeros((arr.shape[0]))
tmp[indices] = 1
votes.append(tmp)
# votes.append(indices.tolist())
# print(*[f"user_id: {users[idx]} {m}±{s}" for m, s, idx in zip(weights_mean, weights_std, range(len(weights_mean)))], sep="\n")
out = []
votes = np.stack(votes, axis=0)
print("votespace", votes.shape)
votes = np.mean(votes, 0)
for idx, f in enumerate(votes):
if f > frac:
out.append((idx, f))
return out
LOG = logging.getLogger(__name__)
if __name__ == "__main__":
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.simplefilter("ignore")
logging.captureWarnings(True)
logging.basicConfig(level=logging.ERROR)
# Generate some example data
# df = make_random_testframe(100_000,5000,0.99)
df, message_ids, users = get_df("quality")
print("combining columns:")
# df = combine_underrepresented_columns(df, 100)
weights = np.ones(df.shape[-1])
y = reweight_features(df, weights)
num_per_iter = int(df.shape[0] * 0.5)
naive = np.argpartition(y, -num_per_iter)[-num_per_iter:]
print("after preprocessing")
# print(df)
# preproc input
# Compute feature importances
# y = reweight_features(df,np.ones(df.shape[1]))
# importance_weights = compute_feature_importance(df, y, list(range(df.shape[1])))
# Print the importance weights for each feature
# print(importance_weights)
print("STARTING RUN")
# sampled_columns = sample_importance_weights(
# importance_weights["importance"],
# )
# print("sampled column", sampled_columns)
# print("compute importance votes:")
# weighted_votes, weightings = importance_votes(df)
# print(weighted_votes)
# print(weightings)
with logging_redirect_tqdm():
print("selected ids")
ids = select_ids(df, 0.5, folds=500)
# print(res, frac)
conn = psycopg2.connect("host=0.0.0.0 port=5432 user=postgres password=postgres dbname=postgres")
# Define the SQL query
# , payload#>'{payload, text}' as text
query = "SELECT DISTINCT id as message_id, message_tree_id FROM message;"
print("selected", len(ids), "messages")
# Read the query results into a Pandas dataframe
df = pd.read_sql(query, con=conn)
out = []
fracs = []
in_naive = []
for i, frac in ids:
res = message_ids[i]
out.append((df.loc[df["message_id"] == res]))
fracs.append(frac)
in_naive.append(i in naive)
df = pd.concat(out)
df["fracs"] = fracs
df["in_naive"] = in_naive
print(df.shape)
print("differences from naive", len(in_naive) - sum(in_naive))
print(df)
df.to_csv("output.csv")