|
256 | 256 | * [few](https://github.com/lacava/few) - A feature engineering wrapper for sklearn. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
257 | 257 | * [scikit-mdr](https://github.com/EpistasisLab/scikit-mdr) - A sklearn-compatible Python implementation of Multifactor Dimensionality Reduction (MDR) for feature construction. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
258 | 258 | * [tsfresh](https://github.com/blue-yonder/tsfresh) - Automatic extraction of relevant features from time series. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
| 259 | +* [dirty_cat](https://github.com/dirty-cat/dirty_cat) - Machine learning on dirty tabular data (especially: string-based variables for classifcation and regression). <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 260 | +* [NitroFE](https://github.com/NITRO-AI/NitroFE) - Moving window features. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
259 | 261 |
|
260 | 262 | ### Feature Selection
|
261 | 263 | * [scikit-feature](https://github.com/jundongl/scikit-feature) - Feature selection repository in Python.
|
262 | 264 | * [boruta_py](https://github.com/scikit-learn-contrib/boruta_py) - Implementations of the Boruta all-relevant feature selection method. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
263 | 265 | * [BoostARoota](https://github.com/chasedehan/BoostARoota) - A fast xgboost feature selection algorithm. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
264 | 266 | * [scikit-rebate](https://github.com/EpistasisLab/scikit-rebate) - A scikit-learn-compatible Python implementation of ReBATE, a suite of Relief-based feature selection algorithms for Machine Learning. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
| 267 | +* [zoofs](https://github.com/jaswinder9051998/zoofs) - A feature selection library based on evolutionary algorithms. |
265 | 268 |
|
266 | 269 | ## Visualization
|
267 | 270 | ### General Purposes
|
|
372 | 375 |
|
373 | 376 | <a name="opt"></a>
|
374 | 377 | ## Optimization
|
| 378 | +* [Optuna](https://github.com/optuna/optuna) - A hyperparameter optimization framework. |
375 | 379 | * [Spearmint](https://github.com/HIPS/Spearmint) - Bayesian optimization.
|
376 | 380 | * [BoTorch](https://github.com/pytorch/botorch) - Bayesian optimization in PyTorch. <img height="20" src="img/pytorch_big2.png" alt="PyTorch based/compatible">
|
377 | 381 | * [scikit-opt](https://github.com/guofei9987/scikit-opt) - Heuristic Algorithms for optimization.
|
|
412 | 416 | * [Chaos Genius](https://github.com/chaos-genius/chaos_genius) - ML powered analytics engine for outlier/anomaly detection and root cause analysis
|
413 | 417 |
|
414 | 418 | ## Natural Language Processing
|
| 419 | +* [spaCy](https://spacy.io/) - Industrial-Strength Natural Language Processing. |
415 | 420 | * [NLTK](https://github.com/nltk/nltk) - Modules, data sets, and tutorials supporting research and development in Natural Language Processing.
|
416 | 421 | * [CLTK](https://github.com/cltk/cltk) - The Classical Language Toolkik.
|
417 | 422 | * [gensim](https://radimrehurek.com/gensim/) - Topic Modelling for Humans.
|
418 | 423 | * [pyMorfologik](https://github.com/dmirecki/pyMorfologik) - Python binding for <a href="https://github.com/morfologik/morfologik-stemming">Morfologik</a>.
|
419 | 424 | * [skift](https://github.com/shaypal5/skift) - Scikit-learn wrappers for Python fastText. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
420 | 425 | * [Phonemizer](https://github.com/bootphon/phonemizer) - Simple text-to-phonemes converter for multiple languages.
|
421 | 426 | * [flair](https://github.com/zalandoresearch/flair) - Very simple framework for state-of-the-art NLP.
|
422 |
| -* [spaCy](https://spacy.io/) - Industrial-Strength Natural Language Processing. |
| 427 | + |
423 | 428 |
|
424 | 429 | ## Computer Audition
|
425 | 430 | * [librosa](https://github.com/librosa/librosa) - Python library for audio and music analysis.
|
|
0 commit comments