Skip to content

Commit 59c9c3f

Browse files
author
Krzysztof Joachimiak
committed
Website improved
1 parent d79e735 commit 59c9c3f

File tree

2 files changed

+39
-14
lines changed

2 files changed

+39
-14
lines changed

docs/README.md

+38-13
Original file line numberDiff line numberDiff line change
@@ -24,14 +24,14 @@
2424
* [Visualization](#vis)
2525
* [Model Explanation](#expl)
2626
* [Reinforcement Learning](#rl)
27-
* [Distributed Computing](#dist)
2827
* [Probabilistic Methods](#bayes)
2928
* [Genetic Programming](#gp)
3029
* [Optimization](#opt)
3130
* [Natural Language Processing](#nlp)
3231
* [Computer Audition](#ca)
3332
* [Computer Vision](#cv)
3433
* [Statistics](#stat)
34+
* [Distributed Computing](#dist)
3535
* [Experimentation](#tools)
3636
* [Evaluation](#eval)
3737
* [Computations](#compt)
@@ -92,7 +92,6 @@
9292
<a name="ml-rf"></a>
9393
### Random Forests
9494
* [rpforest](https://github.com/lyst/rpforest) - A forest of random projection trees. <img height="20" src="img/sklearn_big.png" alt="sklearn">
95-
* [Random Forest Clustering](https://github.com/joshloyal/RandomForestClustering) - Unsupervised Clustering using Random Forests.<img height="20" src="img/sklearn_big.png" alt="sklearn">
9695
* [sklearn-random-bits-forest](https://github.com/tmadl/sklearn-random-bits-forest) - Wrapper of the Random Bits Forest program written by (Wang et al., 2016).<img height="20" src="img/sklearn_big.png" alt="sklearn">
9796
* [rgf_python](https://github.com/fukatani/rgf_python) - Python Wrapper of Regularized Greedy Forest. <img height="20" src="img/sklearn_big.png" alt="sklearn">
9897

@@ -140,7 +139,6 @@
140139
* [TensorLayer](https://github.com/zsdonghao/tensorlayer) - Deep Learning and Reinforcement Learning Library for Researcher and Engineer. <img height="20" src="img/tf_big2.png" alt="sklearn">
141140
* [TFLearn](https://github.com/tflearn/tflearn) - Deep learning library featuring a higher-level API for TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
142141
* [Sonnet](https://github.com/deepmind/sonnet) - TensorFlow-based neural network library. <img height="20" src="img/tf_big2.png" alt="sklearn">
143-
* [TensorForce](https://github.com/reinforceio/tensorforce) - A TensorFlow library for applied reinforcement learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
144142
* [tensorpack](https://github.com/ppwwyyxx/tensorpack) - A Neural Net Training Interface on TensorFlow <img height="20" src="img/tf_big2.png" alt="sklearn">
145143
* [Polyaxon](https://github.com/polyaxon/polyaxon) - A platform that helps you build, manage and monitor deep learning models. <img height="20" src="img/tf_big2.png" alt="sklearn">
146144
* [NeuPy](https://github.com/itdxer/neupy) - NeuPy is a Python library for Artificial Neural Networks and Deep Learning (previously: <img height="20" src="img/theano_big.png" alt="Theano compatible">). <img height="20" src="img/tf_big2.png" alt="sklearn">
@@ -154,13 +152,13 @@
154152

155153
<a name="dl-keras"></a>
156154
### Keras
157-
* [Keras](https://keras.io) - A high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano.
158-
* [keras-contrib](https://github.com/keras-team/keras-contrib) - Keras community contributions.
159-
* [Hyperas](https://github.com/maxpumperla/hyperas) - Keras + Hyperopt: A very simple wrapper for convenient hyperparameter.
160-
* [Elephas](https://github.com/maxpumperla/elephas) - Distributed Deep learning with Keras & Spark.
161-
* [Hera](https://github.com/keplr-io/hera) - Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.
162-
* [Spektral](https://github.com/danielegrattarola/spektral) - Deep learning on graphs.
163-
* [qkeras](https://github.com/google/qkeras) - A quantization deep learning library.
155+
* [Keras](https://keras.io) - A high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. <img height="20" src="img/keras_big.png" alt="Keras compatible">
156+
* [keras-contrib](https://github.com/keras-team/keras-contrib) - Keras community contributions. <img height="20" src="img/keras_big.png" alt="Keras compatible">
157+
* [Hyperas](https://github.com/maxpumperla/hyperas) - Keras + Hyperopt: A very simple wrapper for convenient hyperparameter. <img height="20" src="img/keras_big.png" alt="Keras compatible">
158+
* [Elephas](https://github.com/maxpumperla/elephas) - Distributed Deep learning with Keras & Spark. <img height="20" src="img/keras_big.png" alt="Keras compatible">
159+
* [Hera](https://github.com/keplr-io/hera) - Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. <img height="20" src="img/keras_big.png" alt="Keras compatible">
160+
* [Spektral](https://github.com/danielegrattarola/spektral) - Deep learning on graphs. <img height="20" src="img/keras_big.png" alt="Keras compatible">
161+
* [qkeras](https://github.com/google/qkeras) - A quantization deep learning library. <img height="20" src="img/keras_big.png" alt="Keras compatible">
164162

165163
<a name="dl-mxnet"></a>
166164
### MXNet
@@ -176,7 +174,6 @@
176174
<a name="dl-chainer"></a>
177175
### Chainer
178176
* [Chainer](https://github.com/chainer/chainer) - A flexible framework for neural networks.
179-
* [ChainerRL](https://github.com/chainer/chainerrl) - A deep reinforcement learning library built on top of Chainer.
180177
* [ChainerCV](https://github.com/chainer/chainercv) - A Library for Deep Learning in Computer Vision.
181178
* [ChainerMN](https://github.com/chainer/chainermn) - Scalable distributed deep learning with Chainer.
182179

@@ -233,7 +230,6 @@
233230
* [meza](https://github.com/reubano/meza) - A Python toolkit for processing tabular data.
234231
* [Prodmodel](https://github.com/prodmodel/prodmodel) - Build system for data science pipelines.
235232

236-
237233
<a name="feat-eng"></a>
238234
## Feature Engineering
239235

@@ -262,6 +258,9 @@
262258
* [prettyplotlib](https://github.com/olgabot/prettyplotlib) - Painlessly create beautiful matplotlib plots.
263259
* [python-ternary](https://github.com/marcharper/python-ternary) - Ternary plotting library for python with matplotlib.
264260
* [missingno](https://github.com/ResidentMario/missingno) - Missing data visualization module for Python.
261+
* [chartify](https://github.com/spotify/chartify/) - Python library that makes it easy for data scientists to create charts.
262+
* [physt](https://github.com/janpipek/physt) - Improved histograms.
263+
* [animatplot](https://github.com/t-makaro/animatplot) - A python package for animating plots build on matplotlib.
265264

266265
<a name="expl"></a>
267266
## Model Explanation
@@ -295,6 +294,7 @@
295294
<a name="rl"></a>
296295
## Reinforcement Learning
297296
* [OpenAI Gym](https://github.com/openai/gym) - A toolkit for developing and comparing reinforcement learning algorithms.
297+
<<<<<<< HEAD
298298

299299
<a name="dist"></a>
300300
## Distributed Computing
@@ -306,6 +306,20 @@
306306
* [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) - PArallel Distributed Deep LEarning.
307307
* [dask-ml](https://github.com/dask/dask-ml) - Distributed and parallel machine learning. <img height="20" src="img/sklearn_big.png" alt="sklearn">
308308
* [Distributed](https://github.com/dask/distributed) - Distributed computation in Python.
309+
=======
310+
* [Coach](https://github.com/NervanaSystems/coach) - Easy experimentation with state of the art Reinforcement Learning algorithms.
311+
* [garage](https://github.com/rlworkgroup/garage) - A toolkit for reproducible reinforcement learning research.
312+
* [OpenAI Baselines](https://github.com/openai/baselines) - High-quality implementations of reinforcement learning algorithms.
313+
* [Stable Baselines](https://github.com/hill-a/stable-baselines) - A set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines.
314+
* [RLlib](https://ray.readthedocs.io/en/latest/rllib.html) - Scalable Reinforcement Learning.
315+
* [Horizon](https://github.com/facebookresearch/Horizon) - A platform for Applied Reinforcement Learning.
316+
* [TF-Agents](https://github.com/tensorflow/agents) - A library for Reinforcement Learning in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
317+
* [TensorForce](https://github.com/reinforceio/tensorforce) - A TensorFlow library for applied reinforcement learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
318+
* [TRFL](https://github.com/deepmind/trfl) - TensorFlow Reinforcement Learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
319+
* [Dopamine](https://github.com/google/dopamine) - A research framework for fast prototyping of reinforcement learning algorithms.
320+
* [keras-rl](https://github.com/keras-rl/keras-rl) - Deep Reinforcement Learning for Keras. <img height="20" src="img/keras_big.png" alt="Keras compatible">
321+
* [ChainerRL](https://github.com/chainer/chainerrl) - A deep reinforcement learning library built on top of Chainer.
322+
>>>>>>> a2d28c6bc10e869f370df253130e94e424371c6f
309323
310324
<a name="bayes"></a>
311325
## Probabilistic Methods
@@ -405,6 +419,17 @@
405419
* [scikit-posthocs](https://github.com/maximtrp/scikit-posthocs) - Pairwise Multiple Comparisons Post-hoc Tests.
406420
* [Alphalens](https://github.com/quantopian/alphalens) - Performance analysis of predictive (alpha) stock factors.
407421

422+
<a name="dist"></a>
423+
## Distributed Computing
424+
* [Horovod](https://github.com/uber/horovod) - Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. <img height="20" src="img/tf_big2.png" alt="sklearn">
425+
* [PySpark](https://spark.apache.org/docs/0.9.0/python-programming-guide.html) - Exposes the Spark programming model to Python. <img height="20" src="img/spark_big.png" alt="Apache Spark based">
426+
* [Veles](https://github.com/Samsung/veles) - Distributed machine learning platform.
427+
* [Jubatus](https://github.com/jubatus/jubatus) - Framework and Library for Distributed Online Machine Learning.
428+
* [DMTK](https://github.com/Microsoft/DMTK) - Microsoft Distributed Machine Learning Toolkit.
429+
* [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) - PArallel Distributed Deep LEarning
430+
* [dask-ml](https://github.com/dask/dask-ml) - Distributed and parallel machine learning. <img height="20" src="img/sklearn_big.png" alt="sklearn">
431+
* [Distributed](https://github.com/dask/distributed) - Distributed computation in Python.
432+
408433
<a name="tools"></a>
409434
## Experimentation
410435
* [Sacred](https://github.com/IDSIA/sacred) - A tool to help you configure, organize, log and reproduce experiments.
@@ -424,7 +449,6 @@
424449
* [numpy](http://www.numpy.org/) - The fundamental package needed for scientific computing with Python.
425450
* [Dask](https://github.com/dask/dask) - Parallel computing with task scheduling. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
426451
* [bottleneck](https://github.com/kwgoodman/bottleneck) - Fast NumPy array functions written in C.
427-
* [minpy](https://github.com/dmlc/minpy) - NumPy interface with mixed backend execution.
428452
* [CuPy](https://github.com/cupy/cupy) - NumPy-like API accelerated with CUDA.
429453
* [scikit-tensor](https://github.com/mnick/scikit-tensor) - Python library for multilinear algebra and tensor factorizations.
430454
* [numdifftools](https://github.com/pbrod/numdifftools) - Solve automatic numerical differentiation problems in one or more variables.
@@ -438,6 +462,7 @@
438462

439463
<a name="quant"></a>
440464
## Quantum Computing
465+
* [PennyLane](https://github.com/XanaduAI/pennylane) - Quantum machine learning, automatic differentiation, and optimization of hybrid quantum-classical computations.
441466
* [QML](https://github.com/qmlcode/qml) - A Python Toolkit for Quantum Machine Learning.
442467

443468
<a name="conv"></a>

docs/index.html

+1-1
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
<head>
44
<meta charset="UTF-8">
55
<title>Awesome Python Data Science</title>
6-
<link rel="icon" type="image/png" href="img/py-datascience.png">
6+
<link rel="icon" type="image/png" href="img/py-datascience.png">
77
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1" />
88
<meta name="description" content="Description">
99
<meta name="viewport" content="width=device-width, user-scalable=no, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0">

0 commit comments

Comments
 (0)