|
24 | 24 | * [Visualization](#vis)
|
25 | 25 | * [Model Explanation](#expl)
|
26 | 26 | * [Reinforcement Learning](#rl)
|
27 |
| -* [Distributed Computing](#dist) |
28 | 27 | * [Probabilistic Methods](#bayes)
|
29 | 28 | * [Genetic Programming](#gp)
|
30 | 29 | * [Optimization](#opt)
|
31 | 30 | * [Natural Language Processing](#nlp)
|
32 | 31 | * [Computer Audition](#ca)
|
33 | 32 | * [Computer Vision](#cv)
|
34 | 33 | * [Statistics](#stat)
|
| 34 | +* [Distributed Computing](#dist) |
35 | 35 | * [Experimentation](#tools)
|
36 | 36 | * [Evaluation](#eval)
|
37 | 37 | * [Computations](#compt)
|
|
92 | 92 | <a name="ml-rf"></a>
|
93 | 93 | ### Random Forests
|
94 | 94 | * [rpforest](https://github.com/lyst/rpforest) - A forest of random projection trees. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
95 |
| -* [Random Forest Clustering](https://github.com/joshloyal/RandomForestClustering) - Unsupervised Clustering using Random Forests.<img height="20" src="img/sklearn_big.png" alt="sklearn"> |
96 | 95 | * [sklearn-random-bits-forest](https://github.com/tmadl/sklearn-random-bits-forest) - Wrapper of the Random Bits Forest program written by (Wang et al., 2016).<img height="20" src="img/sklearn_big.png" alt="sklearn">
|
97 | 96 | * [rgf_python](https://github.com/fukatani/rgf_python) - Python Wrapper of Regularized Greedy Forest. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
98 | 97 |
|
|
140 | 139 | * [TensorLayer](https://github.com/zsdonghao/tensorlayer) - Deep Learning and Reinforcement Learning Library for Researcher and Engineer. <img height="20" src="img/tf_big2.png" alt="sklearn">
|
141 | 140 | * [TFLearn](https://github.com/tflearn/tflearn) - Deep learning library featuring a higher-level API for TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
|
142 | 141 | * [Sonnet](https://github.com/deepmind/sonnet) - TensorFlow-based neural network library. <img height="20" src="img/tf_big2.png" alt="sklearn">
|
143 |
| -* [TensorForce](https://github.com/reinforceio/tensorforce) - A TensorFlow library for applied reinforcement learning. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
144 | 142 | * [tensorpack](https://github.com/ppwwyyxx/tensorpack) - A Neural Net Training Interface on TensorFlow <img height="20" src="img/tf_big2.png" alt="sklearn">
|
145 | 143 | * [Polyaxon](https://github.com/polyaxon/polyaxon) - A platform that helps you build, manage and monitor deep learning models. <img height="20" src="img/tf_big2.png" alt="sklearn">
|
146 | 144 | * [NeuPy](https://github.com/itdxer/neupy) - NeuPy is a Python library for Artificial Neural Networks and Deep Learning (previously: <img height="20" src="img/theano_big.png" alt="Theano compatible">). <img height="20" src="img/tf_big2.png" alt="sklearn">
|
|
154 | 152 |
|
155 | 153 | <a name="dl-keras"></a>
|
156 | 154 | ### Keras
|
157 |
| -* [Keras](https://keras.io) - A high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. |
158 |
| -* [keras-contrib](https://github.com/keras-team/keras-contrib) - Keras community contributions. |
159 |
| -* [Hyperas](https://github.com/maxpumperla/hyperas) - Keras + Hyperopt: A very simple wrapper for convenient hyperparameter. |
160 |
| -* [Elephas](https://github.com/maxpumperla/elephas) - Distributed Deep learning with Keras & Spark. |
161 |
| -* [Hera](https://github.com/keplr-io/hera) - Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. |
162 |
| -* [Spektral](https://github.com/danielegrattarola/spektral) - Deep learning on graphs. |
163 |
| -* [qkeras](https://github.com/google/qkeras) - A quantization deep learning library. |
| 155 | +* [Keras](https://keras.io) - A high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. <img height="20" src="img/keras_big.png" alt="Keras compatible"> |
| 156 | +* [keras-contrib](https://github.com/keras-team/keras-contrib) - Keras community contributions. <img height="20" src="img/keras_big.png" alt="Keras compatible"> |
| 157 | +* [Hyperas](https://github.com/maxpumperla/hyperas) - Keras + Hyperopt: A very simple wrapper for convenient hyperparameter. <img height="20" src="img/keras_big.png" alt="Keras compatible"> |
| 158 | +* [Elephas](https://github.com/maxpumperla/elephas) - Distributed Deep learning with Keras & Spark. <img height="20" src="img/keras_big.png" alt="Keras compatible"> |
| 159 | +* [Hera](https://github.com/keplr-io/hera) - Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. <img height="20" src="img/keras_big.png" alt="Keras compatible"> |
| 160 | +* [Spektral](https://github.com/danielegrattarola/spektral) - Deep learning on graphs. <img height="20" src="img/keras_big.png" alt="Keras compatible"> |
| 161 | +* [qkeras](https://github.com/google/qkeras) - A quantization deep learning library. <img height="20" src="img/keras_big.png" alt="Keras compatible"> |
164 | 162 |
|
165 | 163 | <a name="dl-mxnet"></a>
|
166 | 164 | ### MXNet
|
|
176 | 174 | <a name="dl-chainer"></a>
|
177 | 175 | ### Chainer
|
178 | 176 | * [Chainer](https://github.com/chainer/chainer) - A flexible framework for neural networks.
|
179 |
| -* [ChainerRL](https://github.com/chainer/chainerrl) - A deep reinforcement learning library built on top of Chainer. |
180 | 177 | * [ChainerCV](https://github.com/chainer/chainercv) - A Library for Deep Learning in Computer Vision.
|
181 | 178 | * [ChainerMN](https://github.com/chainer/chainermn) - Scalable distributed deep learning with Chainer.
|
182 | 179 |
|
|
233 | 230 | * [meza](https://github.com/reubano/meza) - A Python toolkit for processing tabular data.
|
234 | 231 | * [Prodmodel](https://github.com/prodmodel/prodmodel) - Build system for data science pipelines.
|
235 | 232 |
|
236 |
| - |
237 | 233 | <a name="feat-eng"></a>
|
238 | 234 | ## Feature Engineering
|
239 | 235 |
|
|
262 | 258 | * [prettyplotlib](https://github.com/olgabot/prettyplotlib) - Painlessly create beautiful matplotlib plots.
|
263 | 259 | * [python-ternary](https://github.com/marcharper/python-ternary) - Ternary plotting library for python with matplotlib.
|
264 | 260 | * [missingno](https://github.com/ResidentMario/missingno) - Missing data visualization module for Python.
|
| 261 | +* [chartify](https://github.com/spotify/chartify/) - Python library that makes it easy for data scientists to create charts. |
| 262 | +* [physt](https://github.com/janpipek/physt) - Improved histograms. |
| 263 | +* [animatplot](https://github.com/t-makaro/animatplot) - A python package for animating plots build on matplotlib. |
265 | 264 |
|
266 | 265 | <a name="expl"></a>
|
267 | 266 | ## Model Explanation
|
|
295 | 294 | <a name="rl"></a>
|
296 | 295 | ## Reinforcement Learning
|
297 | 296 | * [OpenAI Gym](https://github.com/openai/gym) - A toolkit for developing and comparing reinforcement learning algorithms.
|
| 297 | +<<<<<<< HEAD |
298 | 298 |
|
299 | 299 | <a name="dist"></a>
|
300 | 300 | ## Distributed Computing
|
|
306 | 306 | * [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) - PArallel Distributed Deep LEarning.
|
307 | 307 | * [dask-ml](https://github.com/dask/dask-ml) - Distributed and parallel machine learning. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
308 | 308 | * [Distributed](https://github.com/dask/distributed) - Distributed computation in Python.
|
| 309 | +======= |
| 310 | +* [Coach](https://github.com/NervanaSystems/coach) - Easy experimentation with state of the art Reinforcement Learning algorithms. |
| 311 | +* [garage](https://github.com/rlworkgroup/garage) - A toolkit for reproducible reinforcement learning research. |
| 312 | +* [OpenAI Baselines](https://github.com/openai/baselines) - High-quality implementations of reinforcement learning algorithms. |
| 313 | +* [Stable Baselines](https://github.com/hill-a/stable-baselines) - A set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines. |
| 314 | +* [RLlib](https://ray.readthedocs.io/en/latest/rllib.html) - Scalable Reinforcement Learning. |
| 315 | +* [Horizon](https://github.com/facebookresearch/Horizon) - A platform for Applied Reinforcement Learning. |
| 316 | +* [TF-Agents](https://github.com/tensorflow/agents) - A library for Reinforcement Learning in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
| 317 | +* [TensorForce](https://github.com/reinforceio/tensorforce) - A TensorFlow library for applied reinforcement learning. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
| 318 | +* [TRFL](https://github.com/deepmind/trfl) - TensorFlow Reinforcement Learning. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
| 319 | +* [Dopamine](https://github.com/google/dopamine) - A research framework for fast prototyping of reinforcement learning algorithms. |
| 320 | +* [keras-rl](https://github.com/keras-rl/keras-rl) - Deep Reinforcement Learning for Keras. <img height="20" src="img/keras_big.png" alt="Keras compatible"> |
| 321 | +* [ChainerRL](https://github.com/chainer/chainerrl) - A deep reinforcement learning library built on top of Chainer. |
| 322 | +>>>>>>> a2d28c6bc10e869f370df253130e94e424371c6f |
309 | 323 |
|
310 | 324 | <a name="bayes"></a>
|
311 | 325 | ## Probabilistic Methods
|
|
405 | 419 | * [scikit-posthocs](https://github.com/maximtrp/scikit-posthocs) - Pairwise Multiple Comparisons Post-hoc Tests.
|
406 | 420 | * [Alphalens](https://github.com/quantopian/alphalens) - Performance analysis of predictive (alpha) stock factors.
|
407 | 421 |
|
| 422 | +<a name="dist"></a> |
| 423 | +## Distributed Computing |
| 424 | +* [Horovod](https://github.com/uber/horovod) - Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
| 425 | +* [PySpark](https://spark.apache.org/docs/0.9.0/python-programming-guide.html) - Exposes the Spark programming model to Python. <img height="20" src="img/spark_big.png" alt="Apache Spark based"> |
| 426 | +* [Veles](https://github.com/Samsung/veles) - Distributed machine learning platform. |
| 427 | +* [Jubatus](https://github.com/jubatus/jubatus) - Framework and Library for Distributed Online Machine Learning. |
| 428 | +* [DMTK](https://github.com/Microsoft/DMTK) - Microsoft Distributed Machine Learning Toolkit. |
| 429 | +* [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) - PArallel Distributed Deep LEarning |
| 430 | +* [dask-ml](https://github.com/dask/dask-ml) - Distributed and parallel machine learning. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 431 | +* [Distributed](https://github.com/dask/distributed) - Distributed computation in Python. |
| 432 | + |
408 | 433 | <a name="tools"></a>
|
409 | 434 | ## Experimentation
|
410 | 435 | * [Sacred](https://github.com/IDSIA/sacred) - A tool to help you configure, organize, log and reproduce experiments.
|
|
424 | 449 | * [numpy](http://www.numpy.org/) - The fundamental package needed for scientific computing with Python.
|
425 | 450 | * [Dask](https://github.com/dask/dask) - Parallel computing with task scheduling. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
|
426 | 451 | * [bottleneck](https://github.com/kwgoodman/bottleneck) - Fast NumPy array functions written in C.
|
427 |
| -* [minpy](https://github.com/dmlc/minpy) - NumPy interface with mixed backend execution. |
428 | 452 | * [CuPy](https://github.com/cupy/cupy) - NumPy-like API accelerated with CUDA.
|
429 | 453 | * [scikit-tensor](https://github.com/mnick/scikit-tensor) - Python library for multilinear algebra and tensor factorizations.
|
430 | 454 | * [numdifftools](https://github.com/pbrod/numdifftools) - Solve automatic numerical differentiation problems in one or more variables.
|
|
438 | 462 |
|
439 | 463 | <a name="quant"></a>
|
440 | 464 | ## Quantum Computing
|
| 465 | +* [PennyLane](https://github.com/XanaduAI/pennylane) - Quantum machine learning, automatic differentiation, and optimization of hybrid quantum-classical computations. |
441 | 466 | * [QML](https://github.com/qmlcode/qml) - A Python Toolkit for Quantum Machine Learning.
|
442 | 467 |
|
443 | 468 | <a name="conv"></a>
|
|
0 commit comments