Emerging Properties in Self-Supervised Vision Transformers, arxiv
PaddlePaddle training/validation code and pretrained models for DINO.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2022-01-18): Code is released (Currently weight decay scheduler is not supported!)
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
ViT-S/16 | TBD | TBD | TBD | 21.0M | 224 | 1.0 | bicubic | google/baidu() |
*The results are evaluated on ImageNet2012 validation set.
We provide a few notebooks in aistudio to help you get started:
*(coming soon)*
- Python>=3.6
- yaml>=0.2.5
- PaddlePaddle>=2.1.0
- yacs>=0.1.8
ImageNet2012 dataset is used in the following folder structure:
│imagenet/
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume the downloaded weight file is stored in ./vit_base_patch16_224.pdparams
, to use the vit_base_patch16_224
model in python:
from config import get_config
from transformer import build_vit as build_model
# config files in ./configs/
config = get_config('./configs/vit_base_patch16_224.yaml')
# build model
model = build_model(config)
# load pretrained weights, .pdparams is NOT needed
model_state_dict = paddle.load('./vit_base_patch16_224')
model.set_dict(model_state_dict)
To evaluate ViT model performance on ImageNet2012 with a single GPU, run the following script using command line:
sh run_eval.sh
or
CUDA_VISIBLE_DEVICES=0 \
python main_single_gpu.py \
-cfg='./configs/vit_base_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./vit_base_patch16_224.pdparams'
Run evaluation using multi-GPUs:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/vit_base_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./vit_base_patch16_224.pdparams'
To train the ViT model on ImageNet2012 with multiple GPUs, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python main_multi_gpu.py \
-cfg='./configs/vit_base_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
(coming soon)
@inproceedings{caron2021emerging,
title={Emerging Properties in Self-Supervised Vision Transformers},
author={Caron, Mathilde and Touvron, Hugo and Misra, Ishan and J\'egou, Herv\'e and Mairal, Julien and Bojanowski, Piotr and Joulin, Armand},
booktitle={Proceedings of the International Conference on Computer Vision (ICCV)},
year={2021}
}