-
Notifications
You must be signed in to change notification settings - Fork 322
/
Copy pathval.py
186 lines (180 loc) · 8.27 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import shutil
import random
import argparse
import numpy as np
import paddle
import paddle.nn.functional as F
from config import *
from src.api import infer
from src.datasets import get_dataset
from src.transforms import Resize, Normalize
from src.models import get_model
from src.utils import multi_val_fn
from src.utils import metrics, logger, progbar
from src.utils import TimeAverager, calculate_eta
from src.utils import load_entire_model, resume
def parse_args():
parser = argparse.ArgumentParser(description='Evaluation of Seg. Models')
parser.add_argument(
"--config",
dest='cfg',
default=None,
type=str,
help='The config file.'
)
parser.add_argument(
'--model_path',
dest='model_path',
help='The path of weights file (segmentation model)',
type=str,
default=None
)
parser.add_argument(
"--multi_scales",
type=bool,
default=False,
help='whether employing multiple scales testing'
)
return parser.parse_args()
if __name__ == '__main__':
config = get_config()
args = parse_args()
config = update_config(config, args)
if args.model_path is None:
args.model_path = os.path.join(config.SAVE_DIR,
"iter_{}_model_state.pdparams".format(config.TRAIN.ITERS))
place = 'gpu' if config.VAL.USE_GPU else 'cpu'
paddle.set_device(place)
# build model
model = get_model(config)
if args.model_path:
load_entire_model(model, args.model_path)
logger.info('Loaded trained params of model successfully')
model.eval()
nranks = paddle.distributed.ParallelEnv().nranks
local_rank = paddle.distributed.ParallelEnv().local_rank
if nranks > 1:
# Initialize parallel environment if not done.
if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized():
paddle.distributed.init_parallel_env()
ddp_model = paddle.DataParallel(model)
else:
ddp_model = paddle.DataParallel(model)
# build val dataset and dataloader
transforms_val = [ Resize(target_size=config.VAL.IMAGE_BASE_SIZE,
keep_ori_size=config.VAL.KEEP_ORI_SIZE,
size_divisor=config.VAL.SIZE_DIVISOR),
Normalize(mean=config.VAL.MEAN, std=config.VAL.STD)]
dataset_val = get_dataset(config, data_transform=transforms_val, mode='val')
batch_sampler = paddle.io.DistributedBatchSampler(dataset_val,
batch_size=config.DATA.BATCH_SIZE_VAL, shuffle=False, drop_last=True)
collate_fn = multi_val_fn()
loader_val = paddle.io.DataLoader(dataset_val, batch_sampler=batch_sampler,
num_workers=config.DATA.NUM_WORKERS, return_list=True, collate_fn=collate_fn)
total_iters = len(loader_val)
# build workspace for saving checkpoints
if not os.path.isdir(config.SAVE_DIR):
if os.path.exists(config.SAVE_DIR):
os.remove(config.SAVE_DIR)
os.makedirs(config.SAVE_DIR)
intersect_area_all = 0
pred_area_all = 0
label_area_all = 0
logger.info("Start evaluating (total_samples: {}, total_iters: {}, "
"multi-scale testing: {})".format(len(dataset_val), total_iters, args.multi_scales))
progbar_val = progbar.Progbar(target=total_iters, verbose=1)
reader_cost_averager = TimeAverager()
batch_cost_averager = TimeAverager()
batch_start = time.time()
val_start_time = time.time()
with paddle.no_grad():
for iter, (img, label) in enumerate(loader_val):
reader_cost_averager.record(time.time() - batch_start)
batch_size = len(img)
#label = label.astype('int64')
#print("img.shape: {}, label.shape: {}".format(img.shape, label.shape))
ori_shape = [l.shape[-2:] for l in label]
if args.multi_scales == True:
pred = infer.ms_inference(
model=model,
img=img,
ori_shape=ori_shape,
is_slide=config.VAL.IS_SLIDE,
base_size=config.VAL.IMAGE_BASE_SIZE,
stride_size=config.VAL.STRIDE_SIZE,
crop_size=config.VAL.CROP_SIZE,
num_classes=config.DATA.NUM_CLASSES,
scales=config.VAL.SCALE_RATIOS,
flip_horizontal=True,
flip_vertical=False,
rescale_from_ori=config.VAL.RESCALE_FROM_ORI)
else:
pred = infer.ss_inference(
model=model,
img=img,
ori_shape=ori_shape,
is_slide=config.VAL.IS_SLIDE,
base_size=config.VAL.IMAGE_BASE_SIZE,
stride_size=config.VAL.STRIDE_SIZE,
crop_size=config.VAL.CROP_SIZE,
num_classes=config.DATA.NUM_CLASSES,
rescale_from_ori=config.VAL.RESCALE_FROM_ORI)
for i in range(batch_size):
intersect_area, pred_area, label_area = metrics.calculate_area(
pred[i],
label[i],
dataset_val.num_classes,
ignore_index=dataset_val.ignore_index)
# Gather from all ranks
if nranks > 1:
intersect_area_list = []
pred_area_list = []
label_area_list = []
paddle.distributed.all_gather(intersect_area_list, intersect_area)
paddle.distributed.all_gather(pred_area_list, pred_area)
paddle.distributed.all_gather(label_area_list, label_area)
# Some image has been evaluated and should be eliminated in last iter
if (iter + 1) * nranks > len(dataset_val):
valid = len(dataset_val) - iter * nranks
intersect_area_list = intersect_area_list[:valid]
pred_area_list = pred_area_list[:valid]
label_area_list = label_area_list[:valid]
for i in range(len(intersect_area_list)):
intersect_area_all = intersect_area_all + intersect_area_list[i]
pred_area_all = pred_area_all + pred_area_list[i]
label_area_all = label_area_all + label_area_list[i]
else:
intersect_area_all = intersect_area_all + intersect_area
pred_area_all = pred_area_all + pred_area
label_area_all = label_area_all + label_area
batch_cost_averager.record(time.time() - batch_start, num_samples=len(label))
batch_cost = batch_cost_averager.get_average()
reader_cost = reader_cost_averager.get_average()
if local_rank == 0 :
progbar_val.update(iter + 1, [('batch_cost', batch_cost), ('reader cost', reader_cost)])
reader_cost_averager.reset()
batch_cost_averager.reset()
batch_start = time.time()
val_end_time = time.time()
val_time_cost = val_end_time - val_start_time
class_iou, miou = metrics.mean_iou(intersect_area_all, pred_area_all, label_area_all)
class_acc, acc = metrics.accuracy(intersect_area_all, pred_area_all)
kappa = metrics.kappa(intersect_area_all, pred_area_all, label_area_all)
logger.info("Val_time_cost: {}".format(val_time_cost))
logger.info("[EVAL] #Images: {} mIoU: {:.4f} Acc: {:.4f} Kappa: {:.4f} ".format(len(dataset_val), miou, acc, kappa))
logger.info("[EVAL] Class IoU: \n" + str(np.round(class_iou, 4)))
logger.info("[EVAL] Class Acc: \n" + str(np.round(class_acc, 4)))