-
Notifications
You must be signed in to change notification settings - Fork 322
/
Copy pathtopformer.py
56 lines (49 loc) · 2.02 KB
/
topformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Implement TopFormer
"""
import paddle.nn as nn
from src.models.decoders import *
from src.models.backbones import *
import paddle
import logging
import warnings
warnings.filterwarnings("ignore")
class TopFormer(nn.Layer):
"""TopFormer Segmentation model
"""
def __init__(self, config):
super(TopFormer, self).__init__()
if config.MODEL.ENCODER.TYPE == "SwinTransformer":
self.encoder = SwinTransformer(config)
elif config.MODEL.ENCODER.TYPE == "CSwinTransformer":
self.encoder = CSwinTransformer(config)
elif config.MODEL.ENCODER.TYPE == "FocalTransformer":
self.encoder = FocalTransformer(config)
elif config.MODEL.ENCODER.TYPE == "TopTransformer":
self.encoder = TopTransformer(config)
if config.MODEL.PRETRAINED is not None:
logging.info('Load pretrained backbone from local path!')
self.encoder.set_state_dict(paddle.load(config.MODEL.PRETRAINED))
if 'MaskTransformer' in config.MODEL.DECODER_TYPE:
self.decoder = MaskTransformer(config)
elif 'Linear' in config.MODEL.DECODER_TYPE:
self.decoder = LinearDecoder(config)
elif 'SimpleHead' in config.MODEL.DECODER_TYPE:
self.decoder = SimpleHead(config)
def forward(self, inputs):
features = self.encoder(inputs)
out = self.decoder(features, inputs.shape)
return (out,)