-
Notifications
You must be signed in to change notification settings - Fork 322
/
Copy pathsegformer.py
52 lines (46 loc) · 2.08 KB
/
segformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn as nn
from .backbones.mix_transformer import MixVisionTransformer
from .decoders.segformer_head import SegformerHead
class Segformer(nn.Layer):
"""Segformer model implementation
"""
def __init__(self, config):
super(Segformer, self).__init__()
self.backbone = MixVisionTransformer(
in_channels=config.MODEL.TRANS.IN_CHANNELS,
embed_dims=config.MODEL.TRANS.EMBED_DIM,
num_stages=config.MODEL.TRANS.NUM_STAGES,
num_layers=config.MODEL.TRANS.NUM_LAYERS,
num_heads=config.MODEL.TRANS.NUM_HEADS,
patch_sizes=config.MODEL.TRANS.PATCH_SIZE,
strides=config.MODEL.TRANS.STRIDES,
sr_ratios=config.MODEL.TRANS.SR_RATIOS,
out_indices=config.MODEL.ENCODER.OUT_INDICES,
mlp_ratio=config.MODEL.TRANS.MLP_RATIO,
qkv_bias=config.MODEL.TRANS.QKV_BIAS,
drop_rate=config.MODEL.DROPOUT,
attn_drop_rate=config.MODEL.ATTENTION_DROPOUT,
drop_path_rate=config.MODEL.DROP_PATH,
pretrained=config.MODEL.PRETRAINED)
self.decode_head = SegformerHead(
in_channels=config.MODEL.SEGFORMER.IN_CHANNELS,
channels=config.MODEL.SEGFORMER.CHANNELS,
num_classes=config.DATA.NUM_CLASSES,
align_corners=config.MODEL.SEGFORMER.ALIGN_CORNERS)
def forward(self, inputs):
features = self.backbone(inputs)
out = self.decode_head(features)
return out