-
Notifications
You must be signed in to change notification settings - Fork 322
/
Copy pathdpt.py
41 lines (36 loc) · 1.51 KB
/
dpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module implements DPT
Vision Transformers for Dense Prediction
<https://arxiv.org/abs/2103.13413.pdf>
"""
import paddle
import paddle.nn as nn
from .backbones.vit import VisualTransformer
from .decoders.dpt_head import DPTHead
class DPTSeg(nn.Layer):
"""DPT Segmentation model
"""
def __init__(self, config):
super(DPTSeg, self).__init__()
self.backbone = VisualTransformer(config)
self.head = DPTHead(config)
def forward(self, inputs):
features = self.backbone(inputs)
out = self.head(features)
return out
def init__decoder_lr_coef(self, coef):
for param in self.head.parameters():
param.optimize_attr['learning_rate'] = coef