-
Notifications
You must be signed in to change notification settings - Fork 322
/
Copy pathtrans10k_v2.py
61 lines (52 loc) · 2.47 KB
/
trans10k_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import glob
from src.datasets import Dataset
from src.transforms import Compose
class Trans10kV2(Dataset):
"""Trans10kV2
It contains the first extensive transparent object segmentation dataset,
which contains 11 fine-grained transparent object categories
Args:
transforms (list): Transforms for image.
dataset_root (str): Trans10kV2 dataset directory.
mode (str, optional): Which part of dataset to use. Default: 'train'.
num_classes (int): the number of classes
"""
def __init__(self, transforms, dataset_root, mode='train', num_classes=12):
super(Trans10kV2, self).__init__(transforms=transforms,
num_classes=num_classes, dataset_root=dataset_root, mode=mode)
self.dataset_root = dataset_root
self.transforms = Compose(transforms)
self.file_list = list()
mode = mode.lower()
self.mode = mode
self.num_classes = num_classes
self.ignore_index = 255
if mode == 'val':
mode = 'validation'
img_dir = os.path.join(self.dataset_root, mode, 'images')
label_dir = os.path.join(self.dataset_root, mode, 'masks_12')
if self.dataset_root is None or not os.path.isdir(
self.dataset_root) or not os.path.isdir(
img_dir) or not os.path.isdir(label_dir):
raise ValueError("The dataset is not Found or the folder structure"
"is nonconfoumance.")
label_files = sorted(glob.glob(os.path.join(label_dir, '*_mask.png')), key=lambda x: x.split('_m')[0])
img_files = sorted(glob.glob(os.path.join(img_dir, '*.jpg')), key=lambda x: x.split('.')[0])
self.file_list = [[
img_path, label_path
] for img_path, label_path in zip(img_files, label_files)]
print("mode: {}, file_nums: {}".format(mode, len(self.file_list)))