-
Notifications
You must be signed in to change notification settings - Fork 322
/
Copy pathpascal_context.py
81 lines (68 loc) · 3.37 KB
/
pascal_context.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from PIL import Image
from src.datasets import Dataset
from src.transforms import Compose
class PascalContext(Dataset):
"""PascalContext
This dataset is a set of additional annotations for PASCAL VOC 2010. It goes
beyond the original PASCAL semantic segmentation task by providing annotations
for the whole scene. The statistics section has a full list of 400+ labels.
Here, we choose 59 foreground and 1 background class for training segmentation
models. (The ``img`` is fixed to '.jpg' and ``label`` is fixed to '.png'.)
Args:
transforms (list): Transforms for image.
dataset_root (str): The dataset directory. Default: None
mode (str): Which part of dataset to use. ('train', 'trainval',
'context', 'val').
num_classes (int): the number of classes
"""
def __init__(self, transforms=None, dataset_root=None, mode='train',
num_classes=60):
super(PascalContext, self).__init__(transforms=transforms,
num_classes=num_classes, dataset_root=dataset_root, mode=mode)
self.dataset_root = dataset_root
self.transforms = Compose(transforms)
mode = mode.lower()
self.mode = mode
self.file_list = list()
self.num_classes = num_classes
self.ignore_index = 255
if mode not in ['train', 'trainval', 'val']:
raise ValueError("`mode` should be one of ('train', 'trainval', 'val')"
"in PascalContext dataset, but got {}.".format(mode))
if self.dataset_root is None:
raise ValueError("the path of this dataset is None")
image_set_dir = os.path.join(
self.dataset_root, 'ImageSets', 'SegmentationContext')
if mode == 'train':
file_path = os.path.join(image_set_dir, 'train.txt')
elif mode == 'val':
file_path = os.path.join(image_set_dir, 'val.txt')
#file_path = os.path.join(image_set_dir, 'val_mini.txt')
elif mode == 'trainval':
file_path = os.path.join(image_set_dir, 'trainval.txt')
print("file_path: ", file_path)
if not os.path.exists(file_path):
raise RuntimeError("PASCAL-Context annotations are not ready.")
img_dir = os.path.join(self.dataset_root, 'JPEGImages')
label_dir = os.path.join(self.dataset_root, 'SegmentationClassContext')
with open(file_path, 'r') as f:
for line in f:
line = line.strip()
image_path = os.path.join(img_dir, ''.join([line, '.jpg']))
label_path = os.path.join(label_dir, ''.join([line, '.png']))
self.file_list.append([image_path, label_path])
print("mode: {}, file_nums: {}".format(mode, len(self.file_list)))