-
Notifications
You must be signed in to change notification settings - Fork 322
/
Copy pathconfig.py
262 lines (231 loc) · 8.01 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
from yacs.config import CfgNode as CN
import yaml
_C = CN()
_C.BASE = ['']
# data settings
_C.DATA = CN()
_C.DATA.BATCH_SIZE = 4 #train batch_size for single GPU
_C.DATA.BATCH_SIZE_VAL = 1 # val batch_size for single GPU
_C.DATA.DATASET = 'PascalContext' # dataset name
_C.DATA.DATA_PATH = '/home/ssd3/wutianyi/datasets/pascal_context'
_C.DATA.CROP_SIZE = (480,480) # input_size (training)
_C.DATA.NUM_CLASSES = 60 # 19 for cityscapes, 60 for Pascal-Context
_C.DATA.NUM_WORKERS = 0 # number of data loading threads (curren paddle must set to 0)
# model settings
_C.MODEL = CN()
_C.MODEL.NAME = 'SETR_MLA'
_C.MODEL.ENCODER = CN()
_C.MODEL.ENCODER.TYPE = 'ViT_MLA'
_C.MODEL.ENCODER.OUT_INDICES = [5,11,17,23]
_C.MODEL.ENCODER.MULTI_GRID = False # Trans2seg cnn encoder setting
_C.MODEL.ENCODER.MULTI_DILATION = None # Trans2seg cnn encoder setting
_C.MODEL.DECODER_TYPE = 'ViT_MLAHead'
_C.MODEL.RESUME = None
_C.MODEL.PRETRAINED = None
_C.MODEL.NUM_CLASSES = 1000
_C.MODEL.DROPOUT = 0.0 # 0.0
_C.MODEL.ATTENTION_DROPOUT = 0.0
_C.MODEL.DROP_PATH = 0.1 # for SwinTransformer
_C.MODEL.OUTPUT_STRIDE = 16
_C.MODEL.BACKBONE_SCALE = 1.0
# Transformer backbone settings
_C.MODEL.TRANS = CN()
_C.MODEL.TRANS.HYBRID = False #TODO: implement
_C.MODEL.TRANS.PATCH_GRID = None #TODO: implement
_C.MODEL.TRANS.PATCH_SIZE = None # 16
_C.MODEL.TRANS.HIDDEN_SIZE = 768 # 768(Base), 1024(Large), 1280(Huge)
_C.MODEL.TRANS.MLP_RATIO = 4
_C.MODEL.TRANS.ATTEN_RATIO = 4.0
_C.MODEL.TRANS.ATTEN_DROPOUT = 0.0
_C.MODEL.TRANS.NUM_HEADS = None # 12(Base), 16(Large), 16(Huge)
_C.MODEL.TRANS.NUM_LAYERS = None # 12(Base), 24(Large), 32(Huge)
_C.MODEL.TRANS.QKV_BIAS = True
## special settings for TopFormer
_C.MODEL.TRANS.INPUT_CHANNELS = [16, 32, 64, 96]
_C.MODEL.TRANS.OUT_CHANNELS = [None, 128, 128, 128]
_C.MODEL.TRANS.EMBED_OUT_INDICE = [2, 4, 6, 8]
_C.MODEL.TRANS.DECODE_OUT_INDICES = [1, 2, 3]
_C.MODEL.TRANS.C2T_STRIDE = 1
_C.MODEL.TRANS.DEPTH = 4
_C.MODEL.TRANS.CFGS = None
_C.MODEL.TRANS.INJECTION = True
_C.MODEL.TRANS.INJECTION_TYPE = "multi_sum"
_C.MODEL.TRANS.KEY_DIM = 16
## special settings for SwinTransformer
_C.MODEL.TRANS.WINDOW_SIZE = 7
_C.MODEL.TRANS.IN_CHANNELS = 3
_C.MODEL.TRANS.EMBED_DIM = 96 # same as HIDDEN_SIZE
_C.MODEL.TRANS.STAGE_DEPTHS = [2, 2, 6, 2]
_C.MODEL.TRANS.NUM_HEADS = None # [3, 6, 12, 24]
_C.MODEL.TRANS.QK_SCALE = None
_C.MODEL.TRANS.APE = False # absolute postional embedding
_C.MODEL.TRANS.PATCH_NORM = True
#_C.MODEL.TRANS.DROP_PATH_RATE = None
_C.MODEL.TRANS.KEEP_CLS_TOKEN = False
## special settings for Segformer
_C.MODEL.TRANS.NUM_STAGES = 4
_C.MODEL.TRANS.STRIDES = [4, 2, 2, 2]
_C.MODEL.TRANS.SR_RATIOS = [8, 4, 2, 1]
## special settings for CSwin Transformer
_C.MODEL.TRANS.SPLIT_SIZES = None
## special settings for Focal Transformer
_C.MODEL.TRANS.FOCAL_STAGES = None
_C.MODEL.TRANS.FOCAL_LEVELS = None
_C.MODEL.TRANS.FOCAL_WINDOWS = None
_C.MODEL.TRANS.EXPAND_STAGES = None
_C.MODEL.TRANS.EXPAND_SIZES = None
_C.MODEL.TRANS.USE_CONV_EMBED = True
# MLA Decoder setting
_C.MODEL.MLA = CN()
#_C.MODEL.MLA.MLA_INDEX = [2, 5, 8, 11] # Base: [2, 5, 8, 11]; Large: [5, 11, 17, 23]
_C.MODEL.MLA.MLA_CHANNELS = 256
_C.MODEL.MLA.MLAHEAD_CHANNELS=128
_C.MODEL.MLA.AUXIHEAD = False
_C.MODEL.MLA.MLAHEAD_ALIGN_CORNERS = False
# PUP and Naive Decoder setting
_C.MODEL.PUP = CN()
_C.MODEL.PUP.INPUT_CHANNEL = 1024
_C.MODEL.PUP.NUM_CONV = 4
_C.MODEL.PUP.NUM_UPSAMPLE_LAYER = 4
_C.MODEL.PUP.CONV3x3_CONV1x1 = True
_C.MODEL.PUP.ALIGN_CORNERS = False
# Auxi PUP and Naive Decoder setting
_C.MODEL.AUXPUP = CN()
_C.MODEL.AUXPUP.INPUT_CHANNEL = 1024
_C.MODEL.AUXPUP.NUM_CONV = 2
_C.MODEL.AUXPUP.NUM_UPSAMPLE_LAYER = 2
_C.MODEL.AUXPUP.CONV3x3_CONV1x1 = True
_C.MODEL.AUXPUP.ALIGN_CORNERS = False
# UperHead Decoder setting
_C.MODEL.UPERHEAD = CN()
_C.MODEL.UPERHEAD.IN_CHANNELS = [96, 192, 384, 768]
_C.MODEL.UPERHEAD.CHANNELS = 512
_C.MODEL.UPERHEAD.IN_INDEX = [0, 1, 2, 3]
_C.MODEL.UPERHEAD.POOL_SCALES = [1, 2, 3, 6]
_C.MODEL.UPERHEAD.DROP_RATIO = 0.1
_C.MODEL.UPERHEAD.ALIGN_CORNERS = False
# Auxilary Segmentation Head setting
_C.MODEL.AUX = CN()
_C.MODEL.AUX.AUXIHEAD = True
_C.MODEL.AUX.AUXHEAD_ALIGN_CORNERS = False
_C.MODEL.AUX.LOSS = True
_C.MODEL.AUX.AUX_WEIGHT = 0.4
# Auxilary FCN Head
_C.MODEL.AUXFCN = CN()
_C.MODEL.AUXFCN.IN_CHANNELS = 384
_C.MODEL.AUXFCN.UP_RATIO = 16
#DPT Head settings
_C.MODEL.DPT = CN()
_C.MODEL.DPT.HIDDEN_FEATURES = [256, 512, 1024, 1024]
_C.MODEL.DPT.FEATURES = 256
_C.MODEL.DPT.READOUT_PROCESS = "project"
#Segmenter Head Settings
_C.MODEL.SEGMENTER = CN()
_C.MODEL.SEGMENTER.NUM_LAYERS = 2
#Segformer Head Settings
_C.MODEL.SEGFORMER = CN()
_C.MODEL.SEGFORMER.IN_CHANNELS = [32, 64, 160, 256]
_C.MODEL.SEGFORMER.CHANNELS = 256
_C.MODEL.SEGFORMER.ALIGN_CORNERS = False
#Simple Head Settings
_C.MODEL.SIMPLE = CN()
_C.MODEL.SIMPLE.IN_CHANNELS = [128, 128, 128]
_C.MODEL.SIMPLE.CHANNELS = 128
_C.MODEL.SIMPLE.INPUT_TRANSFORM = 'multiple_select'
_C.MODEL.SIMPLE.IN_INDEX = [0, 1, 2]
_C.MODEL.SIMPLE.DROPOUT_RATIO = 0.1
_C.MODEL.SIMPLE.IS_DW = False
_C.MODEL.SIMPLE.ALIGN_CORNERS = False
_C.MODEL.SIMPLE.NORM = None
# training settings
_C.TRAIN = CN()
_C.TRAIN.LOSS = "MixSoftmaxCrossEntropyLoss"
_C.TRAIN.WEIGHTS = [1, 0.4, 0.4, 0.4, 0.4]
_C.TRAIN.USE_GPU = True
_C.TRAIN.LAST_EPOCH = 0
_C.TRAIN.BASE_LR = 0.001 #0.003 for pretrain # 0.03 for finetune
_C.TRAIN.END_LR = 1e-4
_C.TRAIN.DECODER_LR_COEF = 1.0
_C.TRAIN.ITERS = 80000
_C.TRAIN.POWER = 0.9
_C.TRAIN.DECAY_STEPS= 80000
_C.TRAIN.APEX = False
_C.TRAIN.IGNORE_INDEX = 255
_C.TRAIN.LR_SCHEDULER = CN()
_C.TRAIN.LR_SCHEDULER.NAME = 'PolynomialDecay'
_C.TRAIN.LR_SCHEDULER.WARM_UP_STEPS = 0
_C.TRAIN.LR_SCHEDULER.WARM_UP_LR_INIT = 0.0
_C.TRAIN.LR_SCHEDULER.MILESTONES = [30, 60, 90]
_C.TRAIN.LR_SCHEDULER.POWER = 0.9 # learning rate scheduler for WarmupPolyLR
_C.TRAIN.LR_SCHEDULER.GAMMA = 0.1 # learning rate scheduler for WarmupMultiStepLR
_C.TRAIN.OPTIMIZER = CN()
_C.TRAIN.OPTIMIZER.NAME = 'SGD'
_C.TRAIN.OPTIMIZER.EPS = 1e-8
_C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999) # for adamW
_C.TRAIN.OPTIMIZER.MOMENTUM = 0.9
_C.TRAIN.OPTIMIZER.NESTEROV = False
_C.TRAIN.OPTIMIZER.WEIGHT_DECAY = 0.0
_C.TRAIN.OPTIMIZER.CENTERTED = False
_C.TRAIN.OPTIMIZER.RHO = 0.95
_C.TRAIN.OPTIMIZER.GRAD_CLIP = None
# Trans2Seg settings
_C.MODEL.TRANS2SEG = CN()
_C.MODEL.TRANS2SEG.EMBED_DIM = 256
_C.MODEL.TRANS2SEG.DEPTH = 4
_C.MODEL.TRANS2SEG.NUM_HEADS = 8
_C.MODEL.TRANS2SEG.MLP_RATIO = 3.
_C.MODEL.TRANS2SEG.HID_DIM = 64
# val settings
_C.VAL = CN()
_C.VAL.USE_GPU = True
_C.VAL.IS_SLIDE = True
_C.VAL.MULTI_SCALES_VAL = False
_C.VAL.SCALE_RATIOS= [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
_C.VAL.IMAGE_BASE_SIZE = None # 520 for pascal context
_C.VAL.SIZE_DIVISOR = None # usually set 32, special val for TopFormer
_C.VAL.KEEP_ORI_SIZE = False
_C.VAL.RESCALE_FROM_ORI = False
_C.VAL.CROP_SIZE = [480,480]
_C.VAL.STRIDE_SIZE = [320,320]
_C.VAL.MEAN = [123.675, 116.28, 103.53]
_C.VAL.STD = [58.395, 57.12, 57.375]
# misc
_C.SAVE_DIR = "./output"
_C.KEEP_CHECKPOINT_MAX = 10
_C.TAG = "default"
_C.SAVE_FREQ_CHECKPOINT = 1000 # freq to save chpt
_C.LOGGING_INFO_FREQ = 50 # freq to logging info
_C.VALIDATE_FREQ = 2000 # freq to do validation
_C.SEED = 0
_C.EVAL = False # run evaluation only
_C.LOCAL_RANK = 0
def _update_config_from_file(config, cfg_file):
config.defrost()
with open(cfg_file, 'r') as infile:
yaml_cfg = yaml.load(infile, Loader=yaml.FullLoader)
for cfg in yaml_cfg.setdefault('BASE', ['']):
if cfg:
_update_config_from_file(
config, os.path.join(os.path.dirname(cfg_file), cfg)
)
print('merging config from {}'.format(cfg_file))
config.merge_from_file(cfg_file)
config.freeze()
def update_config(config, args):
"""Update config by ArgumentParser
Args:
args: ArgumentParser contains options
Return:
config: updated config
"""
if args.cfg:
_update_config_from_file(config, args.cfg)
config.defrost()
if "pretrained_backbone" in args:
config.MODEL.PRETRAINED = args.pretrained_backbone
#config.freeze()
return config
def get_config():
config = _C.clone()
return config