-
Notifications
You must be signed in to change notification settings - Fork 322
/
Copy pathmain_test_multi_gpu.py
256 lines (225 loc) · 10.3 KB
/
main_test_multi_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Swin test using multiple GPU"""
import sys
import os
import time
import argparse
import random
import math
import numpy as np
import paddle
from datasets import get_dataloader
from datasets import get_dataset
from config import get_config
from config import update_config
from utils import AverageMeter
from utils import get_logger
from utils import write_log
from utils import all_reduce_mean
from interpolate_position_embedding import interpolate_position_embedding
from swin import build_swin as build_model
def get_arguments():
"""return argumeents, this will overwrite the config by (1) yaml file (2) argument values"""
parser = argparse.ArgumentParser('Swin')
parser.add_argument('-cfg', type=str, default=None)
parser.add_argument('-dataset', type=str, default=None)
parser.add_argument('-data_folder', type=str, default=None)
parser.add_argument('-anno_folder', type=str, default=None)
parser.add_argument('-data_list_train', type=str, default=None)
parser.add_argument('-data_list_val', type=str, default=None)
parser.add_argument('-class_type', type=str, default=None)
parser.add_argument('-output', type=str, default=None)
parser.add_argument('-batch_size', type=int, default=None)
parser.add_argument('-batch_size_eval', type=int, default=None)
parser.add_argument('-image_size', type=int, default=None)
parser.add_argument('-accum_iter', type=int, default=None)
parser.add_argument('-pretrained', type=str, default=None)
parser.add_argument('-resume', type=str, default=None)
parser.add_argument('-last_epoch', type=int, default=None)
parser.add_argument('-eval', action='store_true')
parser.add_argument('-amp', action='store_true')
arguments = parser.parse_args()
return arguments
@paddle.no_grad()
def validate(dataloader,
model,
criterion,
total_batches,
debug_steps=100,
local_logger=None,
master_logger=None,
save='./'):
"""Validation for the whole dataset
Args:
dataloader: paddle.io.DataLoader, dataloader instance
model: nn.Layer, a ViT model
total_batches: int, total num of batches for one epoch
debug_steps: int, num of iters to log info, default: 100
local_logger: logger for local process/gpu, default: None
master_logger: logger for main process, default: None
Returns:
val_loss_meter.avg: float, average loss on current process/gpu
val_acc1_meter.avg: float, average top1 accuracy on current processes/gpus
master_loss_meter.avg: float, average loss on all processes/gpus
master_acc1_meter.avg: float, average top1 accuracy on all processes/gpus
val_time: float, validation time
"""
model.eval()
val_loss_meter = AverageMeter()
val_acc1_meter = AverageMeter()
master_loss_meter = AverageMeter()
master_acc1_meter = AverageMeter()
time_st = time.time()
# output path
local_rank = paddle.distributed.get_rank()
ofile = open(os.path.join(save, f'pred_{local_rank}.txt'), 'w')
for batch_id, data in enumerate(dataloader):
# get data
images = data[0]
label = data[1]
image_path = data[2]
batch_size = images.shape[0]
output = model(images)
if label is not None:
loss = criterion(output, label)
loss_value = loss.item()
pred = paddle.nn.functional.softmax(output)
if label is not None:
acc1 = paddle.metric.accuracy(pred, label.unsqueeze(1)).item()
# sync from other gpus for overall loss and acc
master_loss = all_reduce_mean(loss_value)
master_acc1 = all_reduce_mean(acc1)
master_batch_size = all_reduce_mean(batch_size)
master_loss_meter.update(master_loss, master_batch_size)
master_acc1_meter.update(master_acc1, master_batch_size)
val_loss_meter.update(loss_value, batch_size)
val_acc1_meter.update(acc1, batch_size)
if batch_id % debug_steps == 0:
local_message = (f"Step[{batch_id:04d}/{total_batches:04d}], "
f"Avg Loss: {val_loss_meter.avg:.4f}, "
f"Avg Acc@1: {val_acc1_meter.avg:.4f}")
master_message = (f"Step[{batch_id:04d}/{total_batches:04d}], "
f"Avg Loss: {master_loss_meter.avg:.4f}, "
f"Avg Acc@1: {master_acc1_meter.avg:.4f}")
write_log(local_logger, master_logger, local_message, master_message)
else:
if batch_id % debug_steps == 0:
local_message = f"Step[{batch_id:04d}/{total_batches:04d}]"
master_message = f"Step[{batch_id:04d}/{total_batches:04d}]"
write_log(local_logger, master_logger, local_message, master_message)
# write results to pred
for idx, img_p in enumerate(image_path):
pred_prob, pred_label = paddle.topk(pred[idx], 1)
pred_label = pred_label.cpu().numpy()[0]
ofile.write(f'{img_p} {pred_label}\n')
val_time = time.time() - time_st
ofile.close()
return (val_loss_meter.avg,
val_acc1_meter.avg,
master_loss_meter.avg,
master_acc1_meter.avg,
val_time)
def main_worker(*args):
"""main method for each process"""
# STEP 0: Preparation
paddle.device.set_device('gpu')
paddle.distributed.init_parallel_env()
world_size = paddle.distributed.get_world_size()
local_rank = paddle.distributed.get_rank()
config = args[0]
last_epoch = config.TRAIN.LAST_EPOCH
seed = config.SEED + local_rank
paddle.seed(seed)
np.random.seed(seed)
random.seed(seed)
local_logger, master_logger = get_logger(config.SAVE)
message = (f'----- world_size = {world_size}, local_rank = {local_rank} \n'
f'----- {config}')
write_log(local_logger, master_logger, message)
# STEP 1: Create model
model = build_model(config)
# STEP 2: load data
dataset_val = args[1]
dataloader_val = get_dataloader(config, dataset_val, False, True)
total_batch_val = len(dataloader_val)
message = f'----- Total # of val batch (single gpu): {total_batch_val}'
write_log(local_logger, master_logger, message)
# (Optional) Use CrossEntropyLoss for val
criterion_val = paddle.nn.CrossEntropyLoss()
# STEP 3: Load pretrained model weights
if config.MODEL.PRETRAINED:
assert os.path.isfile(config.MODEL.PRETRAINED) is True
model_state = paddle.load(config.MODEL.PRETRAINED)
if 'model' in model_state: # load state_dict with multi items: model, optimier, and epoch
# pretrain only load model weight, opt and epoch are ignored
if 'model_ema' in model_state:
model_state = model_state['model_ema']
else:
model_state = model_state['model']
# delete relative_position_index since it is always re-initialized
for key in [k for k in model_state.keys() if 'relative_position_index' in k]:
del model_state[key]
# delete relative_coords_table since it is always re-initialized
for key in [k for k in model_state.keys() if 'relative_coords_table' in k]:
del model_state[key]
# delete attn_mask since it is always re-initialized
for key in [k for k in model_state.keys() if 'attn_mask' in k]:
del model_state[key]
# interpolate pos tokens if num of model's tokens not equal to num of model_state's tokens
interpolate_position_embedding(model, model_state)
model.set_state_dict(model_state)
message = f"----- Pretrained: Load model state from {config.MODEL.PRETRAINED}"
write_log(local_logger, master_logger, message)
else:
message = f"----- Pretrained model not loaded: config.MODEL.PRETRAINED: {config.MODEL.PRETRAINED}"
write_log(local_logger, master_logger, message, 'faltal')
raise ValueError('Pretrained model none')
# STEP 4: Enable model data parallelism on multi processes
model = paddle.DataParallel(model)
# STEP 5: Run testing / evaluation
write_log(local_logger, master_logger, "----- Start Testing/Validation")
val_loss, val_acc1, avg_loss, avg_acc1, val_time = validate(
dataloader=dataloader_val,
model=model,
criterion=criterion_val,
total_batches=total_batch_val,
debug_steps=config.REPORT_FREQ,
local_logger=local_logger,
master_logger=master_logger,
save=config.SAVE)
local_message = ("----- Validation: " +
f"Validation Loss: {val_loss:.4f}, " +
f"Validation Acc@1: {val_acc1:.4f}, " +
f"time: {val_time:.2f}")
master_message = ("----- Validation: " +
f"Validation Loss: {avg_loss:.4f}, " +
f"Validation Acc@1: {avg_acc1:.4f}, " +
f"time: {val_time:.2f}")
write_log(local_logger, master_logger, local_message, master_message)
def main():
# config is updated in order: (1) default in config.py, (2) yaml file, (3) arguments
config = update_config(get_config(), get_arguments())
# set output folder
config.SAVE = os.path.join(config.SAVE,
f"test-{time.strftime('%Y%m%d-%H-%M')}")
if not os.path.exists(config.SAVE):
os.makedirs(config.SAVE, exist_ok=True)
# get test/val dataset
dataset = get_dataset(config, is_train=False)
# dist spawn lunch: use CUDA_VISIBLE_DEVICES to set available gpus
#paddle.distributed.spawn(main_worker, args=(config, dataset))
main_worker(config, dataset)
if __name__ == "__main__":
main()