-
Notifications
You must be signed in to change notification settings - Fork 322
/
Copy pathdatasets.py
229 lines (201 loc) · 9.9 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import math
import numpy as np
import random
import glob
import PIL
from paddle.io import Dataset
from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from paddle.vision import transforms
from paddle.vision import image_load
from random_erasing import RandomErasing
from config import get_config
class ABAWDataset(Dataset):
def __init__(self, file_folder, anno_folder, data_list=None, class_type='all', is_train=True, transform_ops=None):
super().__init__()
assert class_type in ['all', 'coarse', 'negative']
anno_folder = os.path.join(anno_folder, 'Train_Set' if is_train else "Validation_Set")
class_names_original = ['Neutral', 'Anger', 'Disgust', 'Fear', 'Happiness', 'Sadness', 'Surprise', 'Other']
class_names_coarse = ['Neutral', 'Happiness', 'Surprise', 'Other', 'Negative']
class_names_negative = ['Anger', 'Disgust', 'Fear', 'Sadness']
class_mapping = {
'all': None,
'coarse': [0, 4, 4, 4, 1, 4, 2, 3],
'negative': [-1, 0, 1, 2, -1, 3, -1, -1]
}
self.transforms = transform_ops
self.file_folder = file_folder
if data_list is not None and os.path.isfile(data_list):
print(f'----- Loading data list form: {data_list}')
self.data_list = []
with open(data_list, 'r') as infile:
for line in infile:
self.data_list.append(
(line.split(' ')[0], int(line.split(' ')[1]))
)
else:
print(f'----- Generating data list form: {anno_folder}')
save_path = f'./train_list_{class_type}.txt' if is_train else f'./val_list_{class_type}.txt'
self.data_list = self.gen_list(file_folder,
anno_folder,
class_mapping=class_mapping[class_type],
save_path=save_path)
print(f'----- Total images: {len(self.data_list)}')
def __len__(self):
return len(self.data_list)
def __getitem__(self, index):
data = image_load(os.path.join(self.file_folder, self.data_list[index][0])).convert('RGB')
data = self.transforms(data)
label = self.data_list[index][1]
image_path = self.data_list[index][0]
return data, label, image_path
def gen_list(self, file_folder, anno_folder, class_mapping=None, save_path=None):
"""Generate list of data samples where each line contains image path and its label
Input:
file_folder: folder path of images (aligned)
anno_folder: folder path of annotations, e.g., ./EXPR_Classification_Challenge/
class_mapping: list, class mapping for negative and coarse
save_path: path of a txt file for saving list, default None
Output:
out_list: list of tuple contains relative file path and its label
"""
out_list = []
for label_file in glob.glob(os.path.join(anno_folder, '*.txt')):
with open(label_file, 'r') as infile:
print(f'----- Reading labels from: {os.path.basename(label_file)}')
vid_name = os.path.basename(label_file)[0:-4]
for idx, line in enumerate(infile):
if idx == 0:
classnames = line.split(',')
else:
label = int(line)
if label == -1: # eliminate data with -1 label
continue
if class_mapping is not None:
label = class_mapping[label]
if label == -1: # eliminate data with -1 label (negative)
continue
image_name = f'{str(idx).zfill(5)}.jpg'
if os.path.isfile(os.path.join(file_folder, vid_name, image_name)):
out_list.append((os.path.join(vid_name, image_name), label)) # tuple
if save_path is not None:
with open(save_path, 'w') as ofile:
for path, label in out_list:
ofile.write(f'{path} {label}\n')
print(f'List saved to: {save_path}')
return out_list
class RandomApply():
def __init__(self, transforms, prob=0.5):
self.prob = prob
self.transforms = transforms
def __call__(self, x):
if random.random() > self.prob:
for t in self.transforms:
x = t(x)
return x
class GaussianBlur():
def __init__(self, sigma_min=0.1, sigma_max=2.0):
self.sigma_min = sigma_min
self.sigma_max = sigma_max
def __call__(self, x):
sigma = np.random.uniform(self.sigma_min, self.sigma_max)
x = x.filter(PIL.ImageFilter.GaussianBlur(radius=sigma))
return x
def get_train_transforms(config):
aug_op_list = []
aug_op_list.append(RandomApply([transforms.RandomRotation(degrees=6)], prob=0.5))
aug_op_list.append(
transforms.RandomResizedCrop((config.DATA.IMAGE_SIZE, config.DATA.IMAGE_SIZE),
scale=(0.08, 1.0), ratio=(1., 1.), interpolation='bicubic'))
aug_op_list.append(transforms.RandomHorizontalFlip())
aug_op_list.append(RandomApply([transforms.Grayscale()], prob=0.2))
aug_op_list.append(RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4)], prob=0.8))
aug_op_list.append(RandomApply([GaussianBlur(0.1, 2.0)], prob=0.5))
aug_op_list.append(transforms.ToTensor())
aug_op_list.append(transforms.Normalize(mean=config.DATA.IMAGENET_MEAN,
std=config.DATA.IMAGENET_STD))
if config.TRAIN.RANDOM_ERASE_PROB > 0.:
random_erasing = RandomErasing(prob=config.TRAIN.RANDOM_ERASE_PROB,
mode=config.TRAIN.RANDOM_ERASE_MODE,
max_count=config.TRAIN.RANDOM_ERASE_COUNT,
num_splits=config.TRAIN.RANDOM_ERASE_SPLIT)
aug_op_list.append(random_erasing)
transforms_train = transforms.Compose(aug_op_list)
return transforms_train
def get_val_transforms(config):
scale_size = int(math.floor(config.DATA.IMAGE_SIZE / config.DATA.CROP_PCT))
transforms_val = transforms.Compose([
transforms.Resize(scale_size, 'bicubic'), # single int for resize shorter side of image
transforms.CenterCrop((config.DATA.IMAGE_SIZE, config.DATA.IMAGE_SIZE)),
transforms.ToTensor(),
transforms.Normalize(mean=config.DATA.IMAGENET_MEAN, std=config.DATA.IMAGENET_STD)])
return transforms_val
def get_dataset(config, is_train=True):
if config.DATA.DATASET == "ABAW":
if is_train:
transform_ops = get_train_transforms(config)
else:
transform_ops = get_val_transforms(config)
dataset = ABAWDataset(file_folder=config.DATA.DATA_FOLDER,
anno_folder=config.DATA.ANNO_FOLDER,
data_list=config.DATA.DATA_LIST_TRAIN if is_train else config.DATA.DATA_LIST_VAL,
class_type=config.DATA.CLASS_TYPE,
is_train=is_train,
transform_ops=transform_ops)
else:
raise NotImplementedError(
"Wrong dataset name: [{config.DATA.DATASET}]. Only 'imagenet2012' is supported now")
return dataset
def get_dataloader(config, dataset, is_train=True, use_dist_sampler=False):
"""Get dataloader from dataset, allows multiGPU settings.
Multi-GPU loader is implements as distributedBatchSampler.
Args:
config: see config.py for details
dataset: paddle.io.dataset object
is_train: bool, when False, shuffle is off and BATCH_SIZE_EVAL is used, default: True
use_dist_sampler: if True, DistributedBatchSampler is used, default: False
Returns:
dataloader: paddle.io.DataLoader object.
"""
batch_size = config.DATA.BATCH_SIZE if is_train else config.DATA.BATCH_SIZE_EVAL
if use_dist_sampler is True:
sampler = DistributedBatchSampler(dataset=dataset,
batch_size=batch_size,
shuffle=is_train,
drop_last=is_train)
dataloader = DataLoader(dataset=dataset,
batch_sampler=sampler,
num_workers=config.DATA.NUM_WORKERS)
else:
dataloader = DataLoader(dataset=dataset,
batch_size=batch_size,
num_workers=config.DATA.NUM_WORKERS,
shuffle=is_train,
drop_last=is_train)
return dataloader
def main():
config = get_config()
# train dataset
#transform_ops = get_train_transforms(config)
#dataset = ABAWDataset(file_folder='./abaw_dataset/aligned_MTCNNXue/',
# anno_folder='./abaw_dataset/Third_ABAW_Annotations/EXPR_Classification_Challenge/Train_Set',
# #data_list='./train_list_all.txt',
# data_list=None,
# class_type='negative',
# is_train=True,
# transform_ops=transform_ops)
# val dataset
transform_ops = get_val_transforms(config)
dataset = ABAWDataset(file_folder='./abaw_dataset/aligned_MTCNNXue/',
anno_folder='./abaw_dataset/Third_ABAW_Annotations/EXPR_Classification_Challenge',
data_list=None,
class_type='coarse',
is_train=False,
transform_ops=transform_ops)
for idx, sample in enumerate(dataset):
if idx == 10:
break
print(sample[0], sample[1])
if __name__ == "__main__":
main()