15
15
from pix_framework .discovery .resource_profiles import discover_pool_resource_profiles
16
16
from pix_framework .filesystem .file_manager import create_folder , get_random_folder_id , remove_asset
17
17
18
+ from .repair import repair_with_missing_activities
19
+ from .settings import HyperoptIterationParams
18
20
from ..batching .discovery import discover_batching_rules
19
21
from ..cli_formatter import print_message , print_step , print_subsection
20
22
from ..event_log .event_log import EventLog
23
25
from ..simulation .parameters .BPS_model import BPSModel
24
26
from ..simulation .prosimos import simulate_and_evaluate
25
27
from ..utilities import get_process_model_path , get_simulation_parameters_path , hyperopt_step
26
- from .repair import repair_with_missing_activities
27
- from .settings import HyperoptIterationParams
28
28
29
29
30
30
class ResourceModelOptimizer :
@@ -118,7 +118,7 @@ def _hyperopt_iteration(self, hyperopt_iteration_dict: dict):
118
118
optimization_metric = self .settings .optimization_metric ,
119
119
discovery_type = self .settings .discovery_type ,
120
120
output_dir = output_dir ,
121
- model_path = current_bps_model .process_model ,
121
+ process_model_path = current_bps_model .process_model ,
122
122
project_name = self .event_log .process_name ,
123
123
)
124
124
print_message (f"Parameters: { hyperopt_iteration_params } " )
@@ -194,14 +194,14 @@ def run(self) -> HyperoptIterationParams:
194
194
discovery_type = self .settings .discovery_type ,
195
195
output_dir = best_result ["output_dir" ],
196
196
project_name = self .event_log .process_name ,
197
- model_path = self .initial_bps_model .process_model ,
197
+ process_model_path = self .initial_bps_model .process_model ,
198
198
)
199
199
200
200
# Instantiate best BPS model
201
201
self .best_bps_model = self .initial_bps_model .deep_copy ()
202
202
# Update best process model (save it in base directory)
203
203
self .best_bps_model .process_model = get_process_model_path (self .base_directory , self .event_log .process_name )
204
- shutil .copyfile (best_result ["model_path " ], self .best_bps_model .process_model )
204
+ shutil .copyfile (best_result ["process_model_path " ], self .best_bps_model .process_model )
205
205
# Update simulation parameters (save them in base directory)
206
206
best_parameters_path = get_simulation_parameters_path (self .base_directory , self .event_log .process_name )
207
207
shutil .copyfile (
@@ -314,7 +314,7 @@ def _process_measurements(self, params: HyperoptIterationParams, status: str, ev
314
314
315
315
@staticmethod
316
316
def _define_response (
317
- status : str , evaluation_measurements : list , output_dir : Path , model_path : Path
317
+ status : str , evaluation_measurements : list , output_dir : Path , process_model_path : Path
318
318
) -> Tuple [str , dict ]:
319
319
# Compute mean distance if status is OK
320
320
if status is STATUS_OK :
@@ -329,7 +329,7 @@ def _define_response(
329
329
"loss" : distance , # Loss value for the fmin function
330
330
"status" : status , # Status of the optimization iteration
331
331
"output_dir" : output_dir ,
332
- "model_path " : model_path ,
332
+ "process_model_path " : process_model_path ,
333
333
}
334
334
# Return updated status and processed response
335
335
return status , response
@@ -340,7 +340,7 @@ def _simulate_bps_model(self, bps_model: BPSModel, output_dir: Path, granularity
340
340
json_parameters_path = bps_model .to_json (output_dir , self .event_log .process_name , granule_size = granularity )
341
341
342
342
evaluation_measures = simulate_and_evaluate (
343
- model_path = bps_model .process_model ,
343
+ process_model_path = bps_model .process_model ,
344
344
parameters_path = json_parameters_path ,
345
345
output_dir = output_dir ,
346
346
simulation_cases = self .event_log .validation_partition [self .event_log .log_ids .case ].nunique (),
0 commit comments