给定一个二叉搜索树的根节点 root
,和一个整数 k
,请你设计一个算法查找其中第 k
个最小元素(从 1 开始计数)。
示例 1:
输入:root = [3,1,4,null,2], k = 1 输出:1
示例 2:
输入:root = [5,3,6,2,4,null,null,1], k = 3 输出:3
提示:
- 树中的节点数为
n
。 1 <= k <= n <= 104
0 <= Node.val <= 104
进阶:如果二叉搜索树经常被修改(插入/删除操作)并且你需要频繁地查找第 k
小的值,你将如何优化算法?
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def kthSmallest(self, root: Optional[TreeNode], k: int) -> int:
def dfs(root):
if root:
nonlocal k, ans
dfs(root.left)
k -= 1
if k == 0:
ans = root.val
return
dfs(root.right)
ans = -1
dfs(root)
return ans
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int k;
private int ans;
public int kthSmallest(TreeNode root, int k) {
this.k = k;
dfs(root);
return ans;
}
private void dfs(TreeNode root) {
if (root == null) {
return;
}
dfs(root.left);
if (--k == 0) {
ans = root.val;
return;
}
dfs(root.right);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int k;
int ans;
int kthSmallest(TreeNode* root, int k) {
this->k = k;
dfs(root);
return ans;
}
void dfs(TreeNode* root) {
if (!root) return;
dfs(root->left);
if (--k == 0)
{
ans = root->val;
return;
}
dfs(root->right);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func kthSmallest(root *TreeNode, k int) int {
var ans int
var dfs func(root *TreeNode)
dfs = func(root *TreeNode) {
if root != nil {
dfs(root.Left)
k--
if k == 0 {
ans = root.Val
return
}
dfs(root.Right)
}
}
dfs(root)
return ans
}