-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy path1004. Sightseeing Trip.cpp
118 lines (96 loc) · 2.16 KB
/
1004. Sightseeing Trip.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#include <bits/stdc++.h>
using namespace std;
int const N = 101;
int n, m, cost[N], mat[N][N], par[N], l[N];
bool vis[N];
vector<vector<pair<int, int> > > g;
priority_queue<pair<int, int> > q;
vector<int> sol, tmp;
int Dijkstra(int src, bool ok, int val) {
fill(cost, cost + N, 2e9);
memset(par, -1, sizeof par);
memset(vis, false, sizeof vis);
memset(l, 0, sizeof l);
while(!q.empty()) q.pop();
cost[src] = 0;
par[src] = src;
l[src] = 0;
q.push({0, src});
int best = 2e9;
while(!q.empty()) {
int v = q.top().second;
int c = -q.top().first;
q.pop();
if(vis[v])
continue;
vis[v] = true;
for(int i = 0, u, nc; i < g[v].size(); ++i) {
u = g[v][i].first;
nc = g[v][i].second;
if(vis[u] && par[v] != u && l[v] + l[u] >= 2) {
if(ok && cost[v] + cost[u] + nc == val) {
sol.clear();
tmp.clear();
sol.push_back(src);
while(par[v] != v) {
if(v == src)
break;
tmp.push_back(v);
v = par[v];
}
reverse(tmp.begin(), tmp.end());
sol.insert(sol.end(), tmp.begin(), tmp.end());
while(par[u] != u) {
if(u == src)
break;
sol.push_back(u);
u = par[u];
}
return 0;
}
if(!ok)
best = min(best, cost[v] + cost[u] + nc);
}
if(c + nc < cost[u]) {
cost[u] = c + nc;
par[u] = v;
l[u] = l[v] + 1;
q.push({-cost[u], u});
}
}
}
return best;
}
int main() {
while(scanf("%d", &n) && n != -1) {
for(int i = 0; i < N; ++i)
fill(mat[i], mat[i] + N, 2e9);
scanf("%d", &m);
for(int i = 0, a, b, c; i < m; ++i) {
scanf("%d %d %d", &a, &b, &c);
--a, --b;
mat[a][b] = mat[b][a] = min(mat[a][b], c);
}
g.clear();
g.resize(n);
for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j)
if(mat[i][j] != 2e9)
g[i].push_back({j, mat[i][j]});
int res = 2e9, best = 2e9, idx;
for(int i = 0; i < n; ++i) {
res = min(res, Dijkstra(i, false, best));
if(res < best)
best = res, idx = i;
}
if(res == 2e9)
puts("No solution.");
else {
Dijkstra(idx, true, best);
for(int i = 0; i < sol.size(); ++i)
printf("%s%d", i == 0 ? "" : " ", sol[i] + 1);
puts("");
}
}
return 0;
}