|
| 1 | +# [2792. Count Nodes That Are Great Enough](https://leetcode.cn/problems/count-nodes-that-are-great-enough) |
| 2 | + |
| 3 | +[English Version](/solution/2700-2799/2792.Count%20Nodes%20That%20Are%20Great%20Enough/README_EN.md) |
| 4 | + |
| 5 | +## 题目描述 |
| 6 | + |
| 7 | +<!-- 这里写题目描述 --> |
| 8 | + |
| 9 | +<p>You are given a <code>root</code> to a binary tree and an integer <code>k</code>. A node of this tree is called <strong>great enough</strong> if the followings hold:</p> |
| 10 | + |
| 11 | +<ul> |
| 12 | + <li>Its subtree has <strong>at least</strong> <code>k</code> nodes.</li> |
| 13 | + <li>Its value is <b>greater</b> than the value of <strong>at least</strong> <code>k</code> nodes in its subtree.</li> |
| 14 | +</ul> |
| 15 | + |
| 16 | +<p>Return<em> the number of nodes in this tree that are great enough.</em></p> |
| 17 | + |
| 18 | +<p>The node <code>u</code> is in the <strong>subtree</strong> of the node <code>v</code>, if <code><font face="monospace">u == v</font></code> or <code>v</code> is an ancestor of <code>u</code>.</p> |
| 19 | + |
| 20 | +<p> </p> |
| 21 | +<p><strong class="example">Example 1:</strong></p> |
| 22 | + |
| 23 | +<pre> |
| 24 | +<strong>Input:</strong> root = [7,6,5,4,3,2,1], k = 2 |
| 25 | +<strong>Output:</strong> 3 |
| 26 | +<strong>Explanation:</strong> Number the nodes from 1 to 7. |
| 27 | +The values in the subtree of node 1: {1,2,3,4,5,6,7}. Since node.val == 7, there are 6 nodes having a smaller value than its value. So it's great enough. |
| 28 | +The values in the subtree of node 2: {3,4,6}. Since node.val == 6, there are 2 nodes having a smaller value than its value. So it's great enough. |
| 29 | +The values in the subtree of node 3: {1,2,5}. Since node.val == 5, there are 2 nodes having a smaller value than its value. So it's great enough. |
| 30 | +It can be shown that other nodes are not great enough. |
| 31 | +See the picture below for a better understanding.</pre> |
| 32 | + |
| 33 | +<p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/2700-2799/2792.Count%20Nodes%20That%20Are%20Great%20Enough/images/1.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 300px; height: 167px;" /></p> |
| 34 | + |
| 35 | +<p><strong class="example">Example 2:</strong></p> |
| 36 | + |
| 37 | +<pre> |
| 38 | +<strong>Input:</strong> root = [1,2,3], k = 1 |
| 39 | +<strong>Output:</strong> 0 |
| 40 | +<strong>Explanation: </strong>Number the nodes from 1 to 3. |
| 41 | +The values in the subtree of node 1: {1,2,3}. Since node.val == 1, there are no nodes having a smaller value than its value. So it's not great enough. |
| 42 | +The values in the subtree of node 2: {2}. Since node.val == 2, there are no nodes having a smaller value than its value. So it's not great enough. |
| 43 | +The values in the subtree of node 3: {3}. Since node.val == 3, there are no nodes having a smaller value than its value. So it's not great enough. |
| 44 | +See the picture below for a better understanding.</pre> |
| 45 | + |
| 46 | +<p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/2700-2799/2792.Count%20Nodes%20That%20Are%20Great%20Enough/images/2.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 123px; height: 101px;" /></p> |
| 47 | + |
| 48 | +<p><strong class="example">Example 3:</strong></p> |
| 49 | + |
| 50 | +<pre> |
| 51 | +<strong>Input:</strong> root = [3,2,2], k = 2 |
| 52 | +<strong>Output:</strong> 1 |
| 53 | +<strong>Explanation: </strong>Number the nodes from 1 to 3. |
| 54 | +The values in the subtree of node 1: {2,2,3}. Since node.val == 3, there are 2 nodes having a smaller value than its value. So it's great enough. |
| 55 | +The values in the subtree of node 2: {2}. Since node.val == 2, there are no nodes having a smaller value than its value. So it's not great enough. |
| 56 | +The values in the subtree of node 3: {2}. Since node.val == 2, there are no nodes having a smaller value than its value. So it's not great enough. |
| 57 | +See the picture below for a better understanding.</pre> |
| 58 | + |
| 59 | +<p><img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/2700-2799/2792.Count%20Nodes%20That%20Are%20Great%20Enough/images/3.png" style="padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 123px; height: 101px;" /></p> |
| 60 | + |
| 61 | +<p> </p> |
| 62 | +<p><strong>Constraints:</strong></p> |
| 63 | + |
| 64 | +<ul> |
| 65 | + <li>The number of nodes in the tree is in the range <code>[1, 10<sup>4</sup>]</code>.<span style="display: none;"> </span></li> |
| 66 | + <li><code>1 <= Node.val <= 10<sup>4</sup></code></li> |
| 67 | + <li><code>1 <= k <= 10</code></li> |
| 68 | +</ul> |
| 69 | + |
| 70 | +## 解法 |
| 71 | + |
| 72 | +<!-- 这里可写通用的实现逻辑 --> |
| 73 | + |
| 74 | +**方法一:DFS + 大根堆** |
| 75 | + |
| 76 | +我们可以使用 DFS 后序遍历整棵树,对于每个节点,我们维护一个大根堆,堆中存储该节点的所有子树中最小的 k 个节点的值,如果当前节点的值大于堆顶元素,那么该节点就是一个「足够大」的节点,我们将答案加一。 |
| 77 | + |
| 78 | +时间复杂度 $O(n \times k \times \log k)$,空间复杂度 $(n \times k)$。其中 $n$ 是树中节点的个数。 |
| 79 | + |
| 80 | +<!-- tabs:start --> |
| 81 | + |
| 82 | +### **Python3** |
| 83 | + |
| 84 | +<!-- 这里可写当前语言的特殊实现逻辑 --> |
| 85 | + |
| 86 | +```python |
| 87 | +# Definition for a binary tree node. |
| 88 | +# class TreeNode: |
| 89 | +# def __init__(self, val=0, left=None, right=None): |
| 90 | +# self.val = val |
| 91 | +# self.left = left |
| 92 | +# self.right = right |
| 93 | +class Solution: |
| 94 | + def countGreatEnoughNodes(self, root: Optional[TreeNode], k: int) -> int: |
| 95 | + def push(pq, x): |
| 96 | + heappush(pq, x) |
| 97 | + if len(pq) > k: |
| 98 | + heappop(pq) |
| 99 | + |
| 100 | + def dfs(root): |
| 101 | + if root is None: |
| 102 | + return [] |
| 103 | + l, r = dfs(root.left), dfs(root.right) |
| 104 | + for x in r: |
| 105 | + push(l, x) |
| 106 | + if len(l) == k and -l[0] < root.val: |
| 107 | + nonlocal ans |
| 108 | + ans += 1 |
| 109 | + push(l, -root.val) |
| 110 | + return l |
| 111 | + |
| 112 | + ans = 0 |
| 113 | + dfs(root) |
| 114 | + return ans |
| 115 | +``` |
| 116 | + |
| 117 | +### **Java** |
| 118 | + |
| 119 | +<!-- 这里可写当前语言的特殊实现逻辑 --> |
| 120 | + |
| 121 | +```java |
| 122 | +/** |
| 123 | + * Definition for a binary tree node. |
| 124 | + * public class TreeNode { |
| 125 | + * int val; |
| 126 | + * TreeNode left; |
| 127 | + * TreeNode right; |
| 128 | + * TreeNode() {} |
| 129 | + * TreeNode(int val) { this.val = val; } |
| 130 | + * TreeNode(int val, TreeNode left, TreeNode right) { |
| 131 | + * this.val = val; |
| 132 | + * this.left = left; |
| 133 | + * this.right = right; |
| 134 | + * } |
| 135 | + * } |
| 136 | + */ |
| 137 | +class Solution { |
| 138 | + private int ans; |
| 139 | + private int k; |
| 140 | + |
| 141 | + public int countGreatEnoughNodes(TreeNode root, int k) { |
| 142 | + this.k = k; |
| 143 | + dfs(root); |
| 144 | + return ans; |
| 145 | + } |
| 146 | + |
| 147 | + private PriorityQueue<Integer> dfs(TreeNode root) { |
| 148 | + if (root == null) { |
| 149 | + return new PriorityQueue<>(Comparator.reverseOrder()); |
| 150 | + } |
| 151 | + var l = dfs(root.left); |
| 152 | + var r = dfs(root.right); |
| 153 | + for (int x : r) { |
| 154 | + l.offer(x); |
| 155 | + if (l.size() > k) { |
| 156 | + l.poll(); |
| 157 | + } |
| 158 | + } |
| 159 | + if (l.size() == k && l.peek() < root.val) { |
| 160 | + ++ans; |
| 161 | + } |
| 162 | + l.offer(root.val); |
| 163 | + if (l.size() > k) { |
| 164 | + l.poll(); |
| 165 | + } |
| 166 | + return l; |
| 167 | + } |
| 168 | +} |
| 169 | +``` |
| 170 | + |
| 171 | +### **C++** |
| 172 | + |
| 173 | +```cpp |
| 174 | +/** |
| 175 | + * Definition for a binary tree node. |
| 176 | + * struct TreeNode { |
| 177 | + * int val; |
| 178 | + * TreeNode *left; |
| 179 | + * TreeNode *right; |
| 180 | + * TreeNode() : val(0), left(nullptr), right(nullptr) {} |
| 181 | + * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} |
| 182 | + * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} |
| 183 | + * }; |
| 184 | + */ |
| 185 | +class Solution { |
| 186 | +public: |
| 187 | + int countGreatEnoughNodes(TreeNode* root, int k) { |
| 188 | + int ans = 0; |
| 189 | + function<priority_queue<int>(TreeNode*)> dfs = [&](TreeNode* root) { |
| 190 | + if (!root) { |
| 191 | + return priority_queue<int>(); |
| 192 | + } |
| 193 | + auto left = dfs(root->left); |
| 194 | + auto right = dfs(root->right); |
| 195 | + while (right.size()) { |
| 196 | + left.push(right.top()); |
| 197 | + right.pop(); |
| 198 | + if (left.size() > k) { |
| 199 | + left.pop(); |
| 200 | + } |
| 201 | + } |
| 202 | + if (left.size() == k && left.top() < root->val) { |
| 203 | + ++ans; |
| 204 | + } |
| 205 | + left.push(root->val); |
| 206 | + if (left.size() > k) { |
| 207 | + left.pop(); |
| 208 | + } |
| 209 | + return left; |
| 210 | + }; |
| 211 | + dfs(root); |
| 212 | + return ans; |
| 213 | + } |
| 214 | +}; |
| 215 | +``` |
| 216 | +
|
| 217 | +### **Go** |
| 218 | +
|
| 219 | +```go |
| 220 | +/** |
| 221 | + * Definition for a binary tree node. |
| 222 | + * type TreeNode struct { |
| 223 | + * Val int |
| 224 | + * Left *TreeNode |
| 225 | + * Right *TreeNode |
| 226 | + * } |
| 227 | + */ |
| 228 | + func countGreatEnoughNodes(root *TreeNode, k int) (ans int) { |
| 229 | + var dfs func(*TreeNode) hp |
| 230 | + dfs = func(root *TreeNode) hp { |
| 231 | + if root == nil { |
| 232 | + return hp{} |
| 233 | + } |
| 234 | + l, r := dfs(root.Left), dfs(root.Right) |
| 235 | + for _, x := range r.IntSlice { |
| 236 | + l.push(x) |
| 237 | + if l.Len() > k { |
| 238 | + l.pop() |
| 239 | + } |
| 240 | + } |
| 241 | + if l.Len() == k && root.Val > l.IntSlice[0] { |
| 242 | + ans++ |
| 243 | + } |
| 244 | + l.push(root.Val) |
| 245 | + if l.Len() > k { |
| 246 | + l.pop() |
| 247 | + } |
| 248 | + return l |
| 249 | + } |
| 250 | + dfs(root) |
| 251 | + return |
| 252 | +} |
| 253 | +
|
| 254 | +type hp struct{ sort.IntSlice } |
| 255 | +
|
| 256 | +func (h hp) Less(i, j int) bool { return h.IntSlice[i] > h.IntSlice[j] } |
| 257 | +func (h *hp) Push(v interface{}) { h.IntSlice = append(h.IntSlice, v.(int)) } |
| 258 | +func (h *hp) Pop() interface{} { |
| 259 | + a := h.IntSlice |
| 260 | + v := a[len(a)-1] |
| 261 | + h.IntSlice = a[:len(a)-1] |
| 262 | + return v |
| 263 | +} |
| 264 | +func (h *hp) push(v int) { heap.Push(h, v) } |
| 265 | +func (h *hp) pop() int { return heap.Pop(h).(int) } |
| 266 | +``` |
| 267 | + |
| 268 | +### **...** |
| 269 | + |
| 270 | +``` |
| 271 | +
|
| 272 | +``` |
| 273 | + |
| 274 | +<!-- tabs:end --> |
0 commit comments