|
54 | 54 | <li><code>1 <= heights[i][j] <= 10<sup>6</sup></code></li>
|
55 | 55 | </ul>
|
56 | 56 |
|
57 |
| - |
58 | 57 | ## 解法
|
59 | 58 |
|
60 | 59 | <!-- 这里可写通用的实现逻辑 -->
|
61 | 60 |
|
| 61 | +并查集。 |
| 62 | + |
| 63 | +并查集模板: |
| 64 | + |
| 65 | +模板 1——朴素并查集: |
| 66 | + |
| 67 | +```python |
| 68 | +# 初始化,p存储每个点的父节点 |
| 69 | +p = list(range(n)) |
| 70 | + |
| 71 | +# 返回x的祖宗节点 |
| 72 | +def find(x): |
| 73 | + if p[x] != x: |
| 74 | + # 路径压缩 |
| 75 | + p[x] = find(p[x]) |
| 76 | + return p[x] |
| 77 | + |
| 78 | +# 合并a和b所在的两个集合 |
| 79 | +p[find(a)] = find(b) |
| 80 | +``` |
| 81 | + |
| 82 | +模板 2——维护 size 的并查集: |
| 83 | + |
| 84 | +```python |
| 85 | +# 初始化,p存储每个点的父节点,size只有当节点是祖宗节点时才有意义,表示祖宗节点所在集合中,点的数量 |
| 86 | +p = list(range(n)) |
| 87 | +size = [1] * n |
| 88 | + |
| 89 | +# 返回x的祖宗节点 |
| 90 | +def find(x): |
| 91 | + if p[x] != x: |
| 92 | + # 路径压缩 |
| 93 | + p[x] = find(p[x]) |
| 94 | + return p[x] |
| 95 | + |
| 96 | +# 合并a和b所在的两个集合 |
| 97 | +if find(a) != find(b): |
| 98 | + size[find(b)] += size[find(a)] |
| 99 | + p[find(a)] = find(b) |
| 100 | +``` |
| 101 | + |
| 102 | +模板 3——维护到祖宗节点距离的并查集: |
| 103 | + |
| 104 | +```python |
| 105 | +# 初始化,p存储每个点的父节点,d[x]存储x到p[x]的距离 |
| 106 | +p = list(range(n)) |
| 107 | +d = [0] * n |
| 108 | + |
| 109 | +# 返回x的祖宗节点 |
| 110 | +def find(x): |
| 111 | + if p[x] != x: |
| 112 | + t = find(p[x]) |
| 113 | + d[x] += d[p[x]] |
| 114 | + p[x] = t |
| 115 | + return p[x] |
| 116 | + |
| 117 | +# 合并a和b所在的两个集合 |
| 118 | +p[find(a)] = find(b) |
| 119 | +d[find(a)] = distance |
| 120 | +``` |
| 121 | + |
| 122 | +对于本题,每个格子当做图的一个节点,把相邻两个格子的高度差绝对值当做边的权重,因此本题是求解从最左上角的节点到最右下角的节点的连通性问题。 |
| 123 | + |
| 124 | +先把图中所有边去掉,然后按照边的权重从小到大,逐个把边添加上。如果在某一次添加一条边时,最左上角和最右下角的节点连通了,那么该边的权重就是题目的最小体力消耗值。 |
| 125 | + |
62 | 126 | <!-- tabs:start -->
|
63 | 127 |
|
64 | 128 | ### **Python3**
|
65 | 129 |
|
66 | 130 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
67 | 131 |
|
68 | 132 | ```python
|
69 |
| - |
| 133 | +class Solution: |
| 134 | + def minimumEffortPath(self, heights: List[List[int]]) -> int: |
| 135 | + m, n = len(heights), len(heights[0]) |
| 136 | + p = list(range(m * n)) |
| 137 | + |
| 138 | + def find(x): |
| 139 | + if p[x] != x: |
| 140 | + p[x] = find(p[x]) |
| 141 | + return p[x] |
| 142 | + |
| 143 | + e = [] |
| 144 | + for i in range(m): |
| 145 | + for j in range(n): |
| 146 | + if i < m - 1: |
| 147 | + e.append([abs(heights[i][j] - heights[i + 1][j]), i * n + j, (i + 1) * n + j]) |
| 148 | + if j < n - 1: |
| 149 | + e.append([abs(heights[i][j] - heights[i][j + 1]), i * n + j, i * n + j + 1]) |
| 150 | + e.sort() |
| 151 | + for h, i, j in e: |
| 152 | + p[find(i)] = find(j) |
| 153 | + if find(0) == find(m * n - 1): |
| 154 | + return h |
| 155 | + return 0 |
70 | 156 | ```
|
71 | 157 |
|
72 | 158 | ### **Java**
|
73 | 159 |
|
74 | 160 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
75 | 161 |
|
76 | 162 | ```java
|
| 163 | +class Solution { |
| 164 | + private int[] p; |
| 165 | + |
| 166 | + public int minimumEffortPath(int[][] heights) { |
| 167 | + int m = heights.length, n = heights[0].length; |
| 168 | + p = new int[m * n]; |
| 169 | + for (int i = 0; i < p.length; ++i) { |
| 170 | + p[i] = i; |
| 171 | + } |
| 172 | + List<int[]> edges = new ArrayList<>(); |
| 173 | + for (int i = 0; i < m; ++i) { |
| 174 | + for (int j = 0; j < n; ++j) { |
| 175 | + if (i < m - 1) { |
| 176 | + edges.add(new int[]{Math.abs(heights[i][j] - heights[i + 1][j]), i * n + j, (i + 1) * n + j}); |
| 177 | + } |
| 178 | + if (j < n - 1) { |
| 179 | + edges.add(new int[]{Math.abs(heights[i][j] - heights[i][j + 1]), i * n + j, i * n + j + 1}); |
| 180 | + } |
| 181 | + } |
| 182 | + } |
| 183 | + Collections.sort(edges, Comparator.comparingInt(a -> a[0])); |
| 184 | + for (int[] e : edges) { |
| 185 | + int i = e[1], j = e[2]; |
| 186 | + p[find(i)] = find(j); |
| 187 | + if (find(0) == find(m * n - 1)) { |
| 188 | + return e[0]; |
| 189 | + } |
| 190 | + } |
| 191 | + return 0; |
| 192 | + } |
| 193 | + |
| 194 | + private int find(int x) { |
| 195 | + if (p[x] != x) { |
| 196 | + p[x] = find(p[x]); |
| 197 | + } |
| 198 | + return p[x]; |
| 199 | + } |
| 200 | +} |
| 201 | +``` |
| 202 | + |
| 203 | +### **C++** |
| 204 | + |
| 205 | +```cpp |
| 206 | +class Solution { |
| 207 | +public: |
| 208 | + vector<int> p; |
| 209 | + |
| 210 | + int minimumEffortPath(vector<vector<int>>& heights) { |
| 211 | + int m = heights.size(), n = heights[0].size(); |
| 212 | + p.resize(m * n); |
| 213 | + for (int i = 0; i < p.size(); ++i) p[i] = i; |
| 214 | + vector<vector<int>> edges; |
| 215 | + for (int i = 0; i < m; ++i) |
| 216 | + { |
| 217 | + for (int j = 0; j < n; ++j) |
| 218 | + { |
| 219 | + if (i < m - 1) edges.push_back({abs(heights[i][j] - heights[i + 1][j]), i * n + j, (i + 1) * n + j}); |
| 220 | + if (j < n - 1) edges.push_back({abs(heights[i][j] - heights[i][j + 1]), i * n + j, i * n + j + 1}); |
| 221 | + } |
| 222 | + } |
| 223 | + sort(edges.begin(), edges.end()); |
| 224 | + for (auto e : edges) |
| 225 | + { |
| 226 | + int i = e[1], j = e[2]; |
| 227 | + p[find(i)] = find(j); |
| 228 | + if (find(0) == find(m * n - 1)) return e[0]; |
| 229 | + } |
| 230 | + return 0; |
| 231 | + } |
| 232 | + |
| 233 | + int find(int x) { |
| 234 | + if (p[x] != x) p[x] = find(p[x]); |
| 235 | + return p[x]; |
| 236 | + } |
| 237 | +}; |
| 238 | +``` |
77 | 239 |
|
| 240 | +### **Go** |
| 241 | +
|
| 242 | +```go |
| 243 | +var p []int |
| 244 | +
|
| 245 | +func minimumEffortPath(heights [][]int) int { |
| 246 | + m, n := len(heights), len(heights[0]) |
| 247 | + p = make([]int, m*n) |
| 248 | + for i := 0; i < len(p); i++ { |
| 249 | + p[i] = i |
| 250 | + } |
| 251 | + var edges [][]int |
| 252 | + for i := 0; i < m; i++ { |
| 253 | + for j := 0; j < n; j++ { |
| 254 | + if i < m-1 { |
| 255 | + s := []int{abs(heights[i][j] - heights[i+1][j]), i*n + j, (i+1)*n + j} |
| 256 | + edges = append(edges, s) |
| 257 | + } |
| 258 | + if j < n-1 { |
| 259 | + s := []int{abs(heights[i][j] - heights[i][j+1]), i*n + j, i*n + j + 1} |
| 260 | + edges = append(edges, s) |
| 261 | + } |
| 262 | + } |
| 263 | + } |
| 264 | + sort.Slice(edges, func(i, j int) bool { |
| 265 | + return edges[i][0] < edges[j][0] |
| 266 | + }) |
| 267 | + for _, e := range edges { |
| 268 | + i, j := e[1], e[2] |
| 269 | + p[find(i)] = find(j) |
| 270 | + if find(0) == find(m*n-1) { |
| 271 | + return e[0] |
| 272 | + } |
| 273 | + } |
| 274 | + return 0 |
| 275 | +} |
| 276 | +
|
| 277 | +func find(x int) int { |
| 278 | + if p[x] != x { |
| 279 | + p[x] = find(p[x]) |
| 280 | + } |
| 281 | + return p[x] |
| 282 | +} |
| 283 | +
|
| 284 | +func abs(x int) int { |
| 285 | + if x > 0 { |
| 286 | + return x |
| 287 | + } |
| 288 | + return -x |
| 289 | +} |
78 | 290 | ```
|
79 | 291 |
|
80 | 292 | ### **...**
|
|
0 commit comments