Skip to content

Commit 9c9f3a6

Browse files
authored
feat: add solutions to lc problem: No.3215 (doocs#3253)
No.3215.Count Triplets with Even XOR Set Bits II
1 parent eb1c642 commit 9c9f3a6

File tree

9 files changed

+593
-0
lines changed

9 files changed

+593
-0
lines changed
Lines changed: 233 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,233 @@
1+
---
2+
comments: true
3+
difficulty: 中等
4+
edit_url: https://github.com/doocs/leetcode/edit/main/solution/3200-3299/3215.Count%20Triplets%20with%20Even%20XOR%20Set%20Bits%20II/README.md
5+
---
6+
7+
<!-- problem:start -->
8+
9+
# [3215. Count Triplets with Even XOR Set Bits II 🔒](https://leetcode.cn/problems/count-triplets-with-even-xor-set-bits-ii)
10+
11+
[English Version](/solution/3200-3299/3215.Count%20Triplets%20with%20Even%20XOR%20Set%20Bits%20II/README_EN.md)
12+
13+
## 题目描述
14+
15+
<!-- description:start -->
16+
17+
Given three integer arrays <code>a</code>, <code>b</code>, and <code>c</code>, return the number of triplets <code>(a[i], b[j], c[k])</code>, such that the bitwise <code>XOR</code> between the elements of each triplet has an <strong>even</strong> number of <span data-keyword="set-bit">set bits</span>.
18+
19+
<p>&nbsp;</p>
20+
<p><strong class="example">Example 1:</strong></p>
21+
22+
<div class="example-block">
23+
<p><strong>Input:</strong> <span class="example-io">a = [1], b = [2], c = [3]</span></p>
24+
25+
<p><strong>Output:</strong> <span class="example-io">1</span></p>
26+
27+
<p><strong>Explanation:</strong></p>
28+
29+
<p>The only triplet is <code>(a[0], b[0], c[0])</code> and their <code>XOR</code> is: <code>1 XOR 2 XOR 3 = 00<sub>2</sub></code>.</p>
30+
</div>
31+
32+
<p><strong class="example">Example 2:</strong></p>
33+
34+
<div class="example-block">
35+
<p><strong>Input:</strong> <span class="example-io">a = [1,1], b = [2,3], c = [1,5]</span></p>
36+
37+
<p><strong>Output:</strong> <span class="example-io">4</span></p>
38+
39+
<p><strong>Explanation:</strong></p>
40+
41+
<p>Consider these four triplets:</p>
42+
43+
<ul>
44+
<li><code>(a[0], b[1], c[0])</code>: <code>1 XOR 3 XOR 1 = 011<sub>2</sub></code></li>
45+
<li><code>(a[1], b[1], c[0])</code>: <code>1 XOR 3 XOR 1 = 011<sub>2</sub></code></li>
46+
<li><code>(a[0], b[0], c[1])</code>: <code>1 XOR 2 XOR 5 = 110<sub>2</sub></code></li>
47+
<li><code>(a[1], b[0], c[1])</code>: <code>1 XOR 2 XOR 5 = 110<sub>2</sub></code></li>
48+
</ul>
49+
</div>
50+
51+
<p>&nbsp;</p>
52+
<p><strong>Constraints:</strong></p>
53+
54+
<ul>
55+
<li><code>1 &lt;= a.length, b.length, c.length &lt;= 10<sup>5</sup></code></li>
56+
<li><code>0 &lt;= a[i], b[i], c[i] &lt;= 10<sup>9</sup></code></li>
57+
</ul>
58+
59+
<!-- description:end -->
60+
61+
## 解法
62+
63+
<!-- solution:start -->
64+
65+
### 方法一:位运算
66+
67+
对于两个整数,异或结果中 $1$ 的个数的奇偶性,取决于两个整数的二进制表示中 $1$ 的个数的奇偶性。
68+
69+
我们可以用三个数组 `cnt1``cnt2``cnt3` 分别记录数组 `a``b``c` 中每个数的二进制表示中 $1$ 的个数的奇偶性。
70+
71+
然后我们在 $[0, 1]$ 的范围内枚举三个数组中的每个数的二进制表示中 $1$ 的个数的奇偶性,如果三个数的二进制表示中 $1$ 的个数的奇偶性之和为偶数,那么这三个数的异或结果中 $1$ 的个数也为偶数,此时我们将这三个数的组合数相乘累加到答案中。
72+
73+
最后返回答案即可。
74+
75+
时间复杂度 $O(n)$,其中 $n$ 为数组 `a``b``c` 的长度。空间复杂度 $O(1)$。
76+
77+
<!-- tabs:start -->
78+
79+
#### Python3
80+
81+
```python
82+
class Solution:
83+
def tripletCount(self, a: List[int], b: List[int], c: List[int]) -> int:
84+
cnt1 = Counter(x.bit_count() & 1 for x in a)
85+
cnt2 = Counter(x.bit_count() & 1 for x in b)
86+
cnt3 = Counter(x.bit_count() & 1 for x in c)
87+
ans = 0
88+
for i in range(2):
89+
for j in range(2):
90+
for k in range(2):
91+
if (i + j + k) & 1 ^ 1:
92+
ans += cnt1[i] * cnt2[j] * cnt3[k]
93+
return ans
94+
```
95+
96+
#### Java
97+
98+
```java
99+
class Solution {
100+
public long tripletCount(int[] a, int[] b, int[] c) {
101+
int[] cnt1 = new int[2];
102+
int[] cnt2 = new int[2];
103+
int[] cnt3 = new int[2];
104+
for (int x : a) {
105+
++cnt1[Integer.bitCount(x) & 1];
106+
}
107+
for (int x : b) {
108+
++cnt2[Integer.bitCount(x) & 1];
109+
}
110+
for (int x : c) {
111+
++cnt3[Integer.bitCount(x) & 1];
112+
}
113+
long ans = 0;
114+
for (int i = 0; i < 2; ++i) {
115+
for (int j = 0; j < 2; ++j) {
116+
for (int k = 0; k < 2; ++k) {
117+
if ((i + j + k) % 2 == 0) {
118+
ans += 1L * cnt1[i] * cnt2[j] * cnt3[k];
119+
}
120+
}
121+
}
122+
}
123+
return ans;
124+
}
125+
}
126+
```
127+
128+
#### C++
129+
130+
```cpp
131+
class Solution {
132+
public:
133+
long long tripletCount(vector<int>& a, vector<int>& b, vector<int>& c) {
134+
int cnt1[2]{};
135+
int cnt2[2]{};
136+
int cnt3[2]{};
137+
for (int x : a) {
138+
++cnt1[__builtin_popcount(x) & 1];
139+
}
140+
for (int x : b) {
141+
++cnt2[__builtin_popcount(x) & 1];
142+
}
143+
for (int x : c) {
144+
++cnt3[__builtin_popcount(x) & 1];
145+
}
146+
long long ans = 0;
147+
for (int i = 0; i < 2; ++i) {
148+
for (int j = 0; j < 2; ++j) {
149+
for (int k = 0; k < 2; ++k) {
150+
if ((i + j + k) % 2 == 0) {
151+
ans += 1LL * cnt1[i] * cnt2[j] * cnt3[k];
152+
}
153+
}
154+
}
155+
}
156+
return ans;
157+
}
158+
};
159+
```
160+
161+
#### Go
162+
163+
```go
164+
func tripletCount(a []int, b []int, c []int) (ans int64) {
165+
cnt1 := [2]int{}
166+
cnt2 := [2]int{}
167+
cnt3 := [2]int{}
168+
for _, x := range a {
169+
cnt1[bits.OnesCount(uint(x))%2]++
170+
}
171+
for _, x := range b {
172+
cnt2[bits.OnesCount(uint(x))%2]++
173+
}
174+
for _, x := range c {
175+
cnt3[bits.OnesCount(uint(x))%2]++
176+
}
177+
for i := 0; i < 2; i++ {
178+
for j := 0; j < 2; j++ {
179+
for k := 0; k < 2; k++ {
180+
if (i+j+k)%2 == 0 {
181+
ans += int64(cnt1[i] * cnt2[j] * cnt3[k])
182+
}
183+
}
184+
}
185+
}
186+
return
187+
}
188+
```
189+
190+
#### TypeScript
191+
192+
```ts
193+
function tripletCount(a: number[], b: number[], c: number[]): number {
194+
const cnt1: [number, number] = [0, 0];
195+
const cnt2: [number, number] = [0, 0];
196+
const cnt3: [number, number] = [0, 0];
197+
for (const x of a) {
198+
++cnt1[bitCount(x) & 1];
199+
}
200+
for (const x of b) {
201+
++cnt2[bitCount(x) & 1];
202+
}
203+
for (const x of c) {
204+
++cnt3[bitCount(x) & 1];
205+
}
206+
let ans = 0;
207+
for (let i = 0; i < 2; ++i) {
208+
for (let j = 0; j < 2; ++j) {
209+
for (let k = 0; k < 2; ++k) {
210+
if ((i + j + k) % 2 === 0) {
211+
ans += cnt1[i] * cnt2[j] * cnt3[k];
212+
}
213+
}
214+
}
215+
}
216+
return ans;
217+
}
218+
219+
function bitCount(i: number): number {
220+
i = i - ((i >>> 1) & 0x55555555);
221+
i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
222+
i = (i + (i >>> 4)) & 0x0f0f0f0f;
223+
i = i + (i >>> 8);
224+
i = i + (i >>> 16);
225+
return i & 0x3f;
226+
}
227+
```
228+
229+
<!-- tabs:end -->
230+
231+
<!-- solution:end -->
232+
233+
<!-- problem:end -->

0 commit comments

Comments
 (0)