|
63 | 63 |
|
64 | 64 | <!-- 这里可写通用的实现逻辑 -->
|
65 | 65 |
|
| 66 | +**方法一:记忆化搜索 + 组合数学** |
| 67 | + |
| 68 | +我们知道 $2n$ 个球,平均分到两个盒子中,总共有 $C_{2n}^n$ 种分法。接下来,我们可以求出每种分法中,两个盒子中球的颜色数相同的情况数。最后,将两者相除即可。 |
| 69 | + |
| 70 | +我们可以预处理出组合数 $C_{n}^m$,然后使用记忆化搜索求解。 |
| 71 | + |
| 72 | +设计一个函数 $dfs(i, j, diff)$,表示当前从第 $i$ 种球开始,第一个盒子剩余可放置 $j$ 个球,两个盒子中球的颜色数的差为 $diff$ 的方案数。 |
| 73 | + |
| 74 | +函数 $dfs(i, j, diff)$ 的执行逻辑如下: |
| 75 | + |
| 76 | +- 如果 $i \geq k$,表示所有球都已经放完,如果 $j = 0$ 且 $diff = 0$,表示两个盒子中球的颜色数相同,返回 $1$,否则返回 $0$; |
| 77 | +- 如果 $j < 0$,表示第一个盒子中球的数量超过了 $n$,返回 $0$; |
| 78 | +- 如果 $f[i][j][diff]$ 不为 $-1$,表示已经计算过,直接返回 $f[i][j][diff]$; |
| 79 | +- 否则,枚举第 $i$ 种球放入第一个盒子中的数量 $x$,则第 $i$ 种球放入第二个盒子中的数量为 $balls[i] - x$,两个盒子中球的颜色数的变化量为 $y$。如果所有球都放入第一个盒子中,那么 $y = 1$;如果所有球都放入第二个盒子中,那么 $y = -1$;否则 $y = 0$。然后,递归计算 $dfs(i + 1, j - x, diff + y)$,并将结果与 $C_{balls[i]}^x$ 相乘,累加到答案中。最后,将答案存入 $f[i][j][diff]$ 中,并返回答案。 |
| 80 | + |
| 81 | +时间复杂度 $O(n^2 \times k^2)$,空间复杂度 $O(n \times k^2)$。其中 $n$ 和 $k$ 分别是球的总数和颜色的种数。 |
| 82 | + |
66 | 83 | <!-- tabs:start -->
|
67 | 84 |
|
68 | 85 | ### **Python3**
|
69 | 86 |
|
70 | 87 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
71 | 88 |
|
72 | 89 | ```python
|
73 |
| - |
| 90 | +class Solution: |
| 91 | + def getProbability(self, balls: List[int]) -> float: |
| 92 | + @cache |
| 93 | + def dfs(i: int, j: int, diff: int) -> float: |
| 94 | + if i >= k: |
| 95 | + return 1 if j == 0 and diff == 0 else 0 |
| 96 | + if j < 0: |
| 97 | + return 0 |
| 98 | + ans = 0 |
| 99 | + for x in range(balls[i] + 1): |
| 100 | + y = 1 if x == balls[i] else (-1 if x == 0 else 0) |
| 101 | + ans += dfs(i + 1, j - x, diff + y) * comb(balls[i], x) |
| 102 | + return ans |
| 103 | + |
| 104 | + n = sum(balls) >> 1 |
| 105 | + k = len(balls) |
| 106 | + return dfs(0, n, 0) / comb(n << 1, n) |
74 | 107 | ```
|
75 | 108 |
|
76 | 109 | ### **Java**
|
77 | 110 |
|
78 | 111 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
79 | 112 |
|
80 | 113 | ```java
|
| 114 | +class Solution { |
| 115 | + private int n; |
| 116 | + private long[][] c; |
| 117 | + private int[] balls; |
| 118 | + private Map<List<Integer>, Long> f = new HashMap<>(); |
| 119 | + |
| 120 | + public double getProbability(int[] balls) { |
| 121 | + int mx = 0; |
| 122 | + for (int x : balls) { |
| 123 | + n += x; |
| 124 | + mx = Math.max(mx, x); |
| 125 | + } |
| 126 | + n >>= 1; |
| 127 | + this.balls = balls; |
| 128 | + int m = Math.max(mx, n << 1); |
| 129 | + c = new long[m + 1][m + 1]; |
| 130 | + for (int i = 0; i <= m; ++i) { |
| 131 | + c[i][0] = 1; |
| 132 | + for (int j = 1; j <= i; ++j) { |
| 133 | + c[i][j] = c[i - 1][j - 1] + c[i - 1][j]; |
| 134 | + } |
| 135 | + } |
| 136 | + return dfs(0, n, 0) * 1.0 / c[n << 1][n]; |
| 137 | + } |
| 138 | + |
| 139 | + private long dfs(int i, int j, int diff) { |
| 140 | + if (i >= balls.length) { |
| 141 | + return j == 0 && diff == 0 ? 1 : 0; |
| 142 | + } |
| 143 | + if (j < 0) { |
| 144 | + return 0; |
| 145 | + } |
| 146 | + List<Integer> key = List.of(i, j, diff); |
| 147 | + if (f.containsKey(key)) { |
| 148 | + return f.get(key); |
| 149 | + } |
| 150 | + long ans = 0; |
| 151 | + for (int x = 0; x <= balls[i]; ++x) { |
| 152 | + int y = x == balls[i] ? 1 : (x == 0 ? -1 : 0); |
| 153 | + ans += dfs(i + 1, j - x, diff + y) * c[balls[i]][x]; |
| 154 | + } |
| 155 | + f.put(key, ans); |
| 156 | + return ans; |
| 157 | + } |
| 158 | +} |
| 159 | +``` |
| 160 | + |
| 161 | +### **C++** |
| 162 | + |
| 163 | +```cpp |
| 164 | +class Solution { |
| 165 | +public: |
| 166 | + double getProbability(vector<int>& balls) { |
| 167 | + int n = accumulate(balls.begin(), balls.end(), 0) / 2; |
| 168 | + int mx = *max_element(balls.begin(), balls.end()); |
| 169 | + int m = max(mx, n << 1); |
| 170 | + long long c[m + 1][m + 1]; |
| 171 | + memset(c, 0, sizeof(c)); |
| 172 | + for (int i = 0; i <= m; ++i) { |
| 173 | + c[i][0] = 1; |
| 174 | + for (int j = 1; j <= i; ++j) { |
| 175 | + c[i][j] = c[i - 1][j - 1] + c[i - 1][j]; |
| 176 | + } |
| 177 | + } |
| 178 | + int k = balls.size(); |
| 179 | + long long f[k][n + 1][k << 1 | 1]; |
| 180 | + memset(f, -1, sizeof(f)); |
| 181 | + function<long long(int, int, int)> dfs = [&](int i, int j, int diff) -> long long { |
| 182 | + if (i >= k) { |
| 183 | + return j == 0 && diff == k ? 1 : 0; |
| 184 | + } |
| 185 | + if (j < 0) { |
| 186 | + return 0; |
| 187 | + } |
| 188 | + if (f[i][j][diff] != -1) { |
| 189 | + return f[i][j][diff]; |
| 190 | + } |
| 191 | + long long ans = 0; |
| 192 | + for (int x = 0; x <= balls[i]; ++x) { |
| 193 | + int y = x == balls[i] ? 1 : (x == 0 ? -1 : 0); |
| 194 | + ans += dfs(i + 1, j - x, diff + y) * c[balls[i]][x]; |
| 195 | + } |
| 196 | + return f[i][j][diff] = ans; |
| 197 | + }; |
| 198 | + return dfs(0, n, k) * 1.0 / c[n << 1][n]; |
| 199 | + } |
| 200 | +}; |
| 201 | +``` |
| 202 | +
|
| 203 | +### **Go** |
| 204 | +
|
| 205 | +```go |
| 206 | +func getProbability(balls []int) float64 { |
| 207 | + n, mx := 0, 0 |
| 208 | + for _, x := range balls { |
| 209 | + n += x |
| 210 | + mx = max(mx, x) |
| 211 | + } |
| 212 | + n >>= 1 |
| 213 | + m := max(mx, n<<1) |
| 214 | + c := make([][]int, m+1) |
| 215 | + for i := range c { |
| 216 | + c[i] = make([]int, m+1) |
| 217 | + } |
| 218 | + for i := 0; i <= m; i++ { |
| 219 | + c[i][0] = 1 |
| 220 | + for j := 1; j <= i; j++ { |
| 221 | + c[i][j] = c[i-1][j-1] + c[i-1][j] |
| 222 | + } |
| 223 | + } |
| 224 | + k := len(balls) |
| 225 | + f := make([][][]int, k) |
| 226 | + for i := range f { |
| 227 | + f[i] = make([][]int, n+1) |
| 228 | + for j := range f[i] { |
| 229 | + f[i][j] = make([]int, k<<1|1) |
| 230 | + for h := range f[i][j] { |
| 231 | + f[i][j][h] = -1 |
| 232 | + } |
| 233 | + } |
| 234 | + } |
| 235 | + var dfs func(int, int, int) int |
| 236 | + dfs = func(i, j, diff int) int { |
| 237 | + if i >= k { |
| 238 | + if j == 0 && diff == k { |
| 239 | + return 1 |
| 240 | + } |
| 241 | + return 0 |
| 242 | + } |
| 243 | + if j < 0 { |
| 244 | + return 0 |
| 245 | + } |
| 246 | + if f[i][j][diff] != -1 { |
| 247 | + return f[i][j][diff] |
| 248 | + } |
| 249 | + ans := 0 |
| 250 | + for x := 0; x <= balls[i]; x++ { |
| 251 | + y := 1 |
| 252 | + if x != balls[i] { |
| 253 | + if x == 0 { |
| 254 | + y = -1 |
| 255 | + } else { |
| 256 | + y = 0 |
| 257 | + } |
| 258 | + } |
| 259 | + ans += dfs(i+1, j-x, diff+y) * c[balls[i]][x] |
| 260 | + } |
| 261 | + f[i][j][diff] = ans |
| 262 | + return ans |
| 263 | + } |
| 264 | + return float64(dfs(0, n, k)) / float64(c[n<<1][n]) |
| 265 | +} |
| 266 | +
|
| 267 | +func max(a, b int) int { |
| 268 | + if a > b { |
| 269 | + return a |
| 270 | + } |
| 271 | + return b |
| 272 | +} |
| 273 | +``` |
81 | 274 |
|
| 275 | +### **TypeScript** |
| 276 | + |
| 277 | +```ts |
| 278 | +function getProbability(balls: number[]): number { |
| 279 | + const n = balls.reduce((a, b) => a + b, 0) >> 1; |
| 280 | + const mx = Math.max(...balls); |
| 281 | + const m = Math.max(mx, n << 1); |
| 282 | + const c: number[][] = Array(m + 1) |
| 283 | + .fill(0) |
| 284 | + .map(() => Array(m + 1).fill(0)); |
| 285 | + for (let i = 0; i <= m; ++i) { |
| 286 | + c[i][0] = 1; |
| 287 | + for (let j = 1; j <= i; ++j) { |
| 288 | + c[i][j] = c[i - 1][j - 1] + c[i - 1][j]; |
| 289 | + } |
| 290 | + } |
| 291 | + const k = balls.length; |
| 292 | + const f: number[][][] = Array(k) |
| 293 | + .fill(0) |
| 294 | + .map(() => |
| 295 | + Array(n + 1) |
| 296 | + .fill(0) |
| 297 | + .map(() => Array((k << 1) | 1).fill(-1)), |
| 298 | + ); |
| 299 | + const dfs = (i: number, j: number, diff: number): number => { |
| 300 | + if (i >= k) { |
| 301 | + return j === 0 && diff === k ? 1 : 0; |
| 302 | + } |
| 303 | + if (j < 0) { |
| 304 | + return 0; |
| 305 | + } |
| 306 | + if (f[i][j][diff] !== -1) { |
| 307 | + return f[i][j][diff]; |
| 308 | + } |
| 309 | + let ans = 0; |
| 310 | + for (let x = 0; x <= balls[i]; ++x) { |
| 311 | + const y = x === balls[i] ? 1 : x === 0 ? -1 : 0; |
| 312 | + ans += dfs(i + 1, j - x, diff + y) * c[balls[i]][x]; |
| 313 | + } |
| 314 | + return (f[i][j][diff] = ans); |
| 315 | + }; |
| 316 | + return dfs(0, n, k) / c[n << 1][n]; |
| 317 | +} |
82 | 318 | ```
|
83 | 319 |
|
84 | 320 | ### **...**
|
|
0 commit comments