|
46 | 46 |
|
47 | 47 | <!-- 这里可写通用的实现逻辑 -->
|
48 | 48 |
|
| 49 | +**方法一:并查集** |
| 50 | + |
| 51 | +考虑**从大到小遍历**数组 $nums$ 中的每个元素 $v$,用并查集来维护以 $v$ 作为子数组最小值的连通块。 |
| 52 | + |
| 53 | +遍历过程中: |
| 54 | + |
| 55 | +$v$ 在数组 $nums$ 中的下标为 $i$,若下标 $i-1$ 对应的元素遍历过,可以将 $i-1$ 与 $i$ 进行合并,同理,若下标 $i+1$ 对应的元素也遍历过了,将 $i$ 与 $i+1$ 合并。合并过程中更新连通块的大小。 |
| 56 | + |
| 57 | +$v$ 作为当前连通块的最小值,当前连通块的大小为 $size[find(i)]$,若 $v>\frac{\text{threshold}}{size[find(i)]}$,说明找到了满足条件的子数组,返回 $true$。 |
| 58 | + |
| 59 | +否则遍历结束,返回 $-1$。 |
| 60 | + |
| 61 | +时间复杂度 $O(nlogn)$。 |
| 62 | + |
| 63 | +**方法二:单调栈** |
| 64 | + |
| 65 | +利用单调栈,得到以当前元素 $nums[i]$ 作为最小元素的左右边界 $left[i]$(左边第一个比 $nums[i]$ 小的元素的位置), $right[i]$(右边第一个比 $nums[i]$ 小的元素的位置)。 |
| 66 | + |
| 67 | +那么对于当前元素 $nums[i]$,$k=right[i]-left[i]-1$,若 $nums[i]>\frac{\text{threshold}}{k}$,说明找到了满足条件的子数组,返回 $true$。 |
| 68 | + |
| 69 | +否则遍历结束,返回 $-1$。 |
| 70 | + |
| 71 | +时间复杂度 $O(n)$。 |
| 72 | + |
49 | 73 | <!-- tabs:start -->
|
50 | 74 |
|
51 | 75 | ### **Python3**
|
52 | 76 |
|
53 | 77 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
54 | 78 |
|
55 | 79 | ```python
|
| 80 | +class Solution: |
| 81 | + def validSubarraySize(self, nums: List[int], threshold: int) -> int: |
| 82 | + def find(x): |
| 83 | + if p[x] != x: |
| 84 | + p[x] = find(p[x]) |
| 85 | + return p[x] |
| 86 | + |
| 87 | + def merge(a, b): |
| 88 | + pa, pb = find(a), find(b) |
| 89 | + if pa == pb: |
| 90 | + return |
| 91 | + p[pa] = pb |
| 92 | + size[pb] += size[pa] |
| 93 | + |
| 94 | + n = len(nums) |
| 95 | + p = list(range(n)) |
| 96 | + size = [1] * n |
| 97 | + arr = sorted(zip(nums, range(n)), reverse=True) |
| 98 | + vis = [False] * n |
| 99 | + for v, i in arr: |
| 100 | + if i and vis[i - 1]: |
| 101 | + merge(i, i - 1) |
| 102 | + if i < n - 1 and vis[i + 1]: |
| 103 | + merge(i, i + 1) |
| 104 | + if v > threshold // size[find(i)]: |
| 105 | + return size[find(i)] |
| 106 | + vis[i] = True |
| 107 | + return -1 |
| 108 | +``` |
56 | 109 |
|
| 110 | +```python |
| 111 | +class Solution: |
| 112 | + def validSubarraySize(self, nums: List[int], threshold: int) -> int: |
| 113 | + n = len(nums) |
| 114 | + left = [-1] * n |
| 115 | + right = [n] * n |
| 116 | + stk = [] |
| 117 | + for i, v in enumerate(nums): |
| 118 | + while stk and nums[stk[-1]] >= v: |
| 119 | + stk.pop() |
| 120 | + if stk: |
| 121 | + left[i] = stk[-1] |
| 122 | + stk.append(i) |
| 123 | + stk = [] |
| 124 | + for i in range(n - 1, -1, -1): |
| 125 | + while stk and nums[stk[-1]] >= nums[i]: |
| 126 | + stk.pop() |
| 127 | + if stk: |
| 128 | + right[i] = stk[-1] |
| 129 | + stk.append(i) |
| 130 | + for i, v in enumerate(nums): |
| 131 | + k = right[i] - left[i] - 1 |
| 132 | + if v > threshold // k: |
| 133 | + return k |
| 134 | + return -1 |
57 | 135 | ```
|
58 | 136 |
|
59 | 137 | ### **Java**
|
60 | 138 |
|
61 | 139 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
62 | 140 |
|
63 | 141 | ```java
|
| 142 | +class Solution { |
| 143 | + private int[] p; |
| 144 | + private int[] size; |
| 145 | + |
| 146 | + public int validSubarraySize(int[] nums, int threshold) { |
| 147 | + int n = nums.length; |
| 148 | + p = new int[n]; |
| 149 | + size = new int[n]; |
| 150 | + for (int i = 0; i < n; ++i) { |
| 151 | + p[i] = i; |
| 152 | + size[i] = 1; |
| 153 | + } |
| 154 | + int[][] arr = new int[n][2]; |
| 155 | + for (int i = 0; i < n; ++i) { |
| 156 | + arr[i][0] = nums[i]; |
| 157 | + arr[i][1] = i; |
| 158 | + } |
| 159 | + Arrays.sort(arr, (a, b) -> b[0] - a[0]); |
| 160 | + boolean[] vis = new boolean[n]; |
| 161 | + for (int[] e : arr) { |
| 162 | + int v = e[0], i = e[1]; |
| 163 | + if (i > 0 && vis[i - 1]) { |
| 164 | + merge(i, i - 1); |
| 165 | + } |
| 166 | + if (i < n - 1 && vis[i + 1]) { |
| 167 | + merge(i, i + 1); |
| 168 | + } |
| 169 | + if (v > threshold / size[find(i)]) { |
| 170 | + return size[find(i)]; |
| 171 | + } |
| 172 | + vis[i] = true; |
| 173 | + } |
| 174 | + return -1; |
| 175 | + } |
| 176 | + |
| 177 | + private int find(int x) { |
| 178 | + if (p[x] != x) { |
| 179 | + p[x] = find(p[x]); |
| 180 | + } |
| 181 | + return p[x]; |
| 182 | + } |
| 183 | + |
| 184 | + private void merge(int a, int b) { |
| 185 | + int pa = find(a), pb = find(b); |
| 186 | + if (pa == pb) { |
| 187 | + return; |
| 188 | + } |
| 189 | + p[pa] = pb; |
| 190 | + size[pb] += size[pa]; |
| 191 | + } |
| 192 | +} |
| 193 | +``` |
| 194 | + |
| 195 | +```java |
| 196 | +class Solution { |
| 197 | + public int validSubarraySize(int[] nums, int threshold) { |
| 198 | + int n = nums.length; |
| 199 | + int[] left = new int[n]; |
| 200 | + int[] right = new int[n]; |
| 201 | + Arrays.fill(left, -1); |
| 202 | + Arrays.fill(right, n); |
| 203 | + Deque<Integer> stk = new ArrayDeque<>(); |
| 204 | + for (int i = 0; i < n; ++i) { |
| 205 | + int v = nums[i]; |
| 206 | + while (!stk.isEmpty() && nums[stk.peek()] >= v) { |
| 207 | + stk.pop(); |
| 208 | + } |
| 209 | + if (!stk.isEmpty()) { |
| 210 | + left[i] = stk.peek(); |
| 211 | + } |
| 212 | + stk.push(i); |
| 213 | + } |
| 214 | + stk.clear(); |
| 215 | + for (int i = n - 1; i >= 0; --i) { |
| 216 | + int v = nums[i]; |
| 217 | + while (!stk.isEmpty() && nums[stk.peek()] >= v) { |
| 218 | + stk.pop(); |
| 219 | + } |
| 220 | + if (!stk.isEmpty()) { |
| 221 | + right[i] = stk.peek(); |
| 222 | + } |
| 223 | + stk.push(i); |
| 224 | + } |
| 225 | + for (int i = 0; i < n; ++i) { |
| 226 | + int v = nums[i]; |
| 227 | + int k = right[i] - left[i] - 1; |
| 228 | + if (v > threshold / k) { |
| 229 | + return k; |
| 230 | + } |
| 231 | + } |
| 232 | + return -1; |
| 233 | + } |
| 234 | +} |
| 235 | +``` |
| 236 | + |
| 237 | +### **C++** |
| 238 | + |
| 239 | +```cpp |
| 240 | +using pii = pair<int, int>; |
| 241 | + |
| 242 | +class Solution { |
| 243 | +public: |
| 244 | + vector<int> p; |
| 245 | + vector<int> size; |
| 246 | + |
| 247 | + int validSubarraySize(vector<int>& nums, int threshold) { |
| 248 | + int n = nums.size(); |
| 249 | + p.resize(n); |
| 250 | + for (int i = 0; i < n; ++i) p[i] = i; |
| 251 | + size.assign(n, 1); |
| 252 | + vector<pii> arr(n); |
| 253 | + for (int i = 0; i < n; ++i) arr[i] = {nums[i], i}; |
| 254 | + sort(arr.begin(), arr.end()); |
| 255 | + vector<bool> vis(n); |
| 256 | + for (int j = n - 1; ~j; --j) |
| 257 | + { |
| 258 | + int v = arr[j].first, i = arr[j].second; |
| 259 | + if (i && vis[i - 1]) merge(i, i - 1); |
| 260 | + if (j < n - 1 && vis[i + 1]) merge(i, i + 1); |
| 261 | + if (v > threshold / size[find(i)]) return size[find(i)]; |
| 262 | + vis[i] = true; |
| 263 | + } |
| 264 | + return -1; |
| 265 | + } |
| 266 | + |
| 267 | + int find(int x) { |
| 268 | + if (p[x] != x) p[x] = find(p[x]); |
| 269 | + return p[x]; |
| 270 | + } |
| 271 | + |
| 272 | + void merge(int a, int b) { |
| 273 | + int pa = find(a), pb = find(b); |
| 274 | + if (pa == pb) return; |
| 275 | + p[pa] = pb; |
| 276 | + size[pb] += size[pa]; |
| 277 | + } |
| 278 | +}; |
| 279 | +``` |
| 280 | +
|
| 281 | +```cpp |
| 282 | +class Solution { |
| 283 | +public: |
| 284 | + int validSubarraySize(vector<int>& nums, int threshold) { |
| 285 | + int n = nums.size(); |
| 286 | + vector<int> left(n, -1); |
| 287 | + vector<int> right(n, n); |
| 288 | + stack<int> stk; |
| 289 | + for (int i = 0; i < n; ++i) |
| 290 | + { |
| 291 | + int v = nums[i]; |
| 292 | + while (!stk.empty() && nums[stk.top()] >= v) stk.pop(); |
| 293 | + if (!stk.empty()) left[i] = stk.top(); |
| 294 | + stk.push(i); |
| 295 | + } |
| 296 | + stk = stack<int>(); |
| 297 | + for (int i = n - 1; ~i; --i) |
| 298 | + { |
| 299 | + int v = nums[i]; |
| 300 | + while (!stk.empty() && nums[stk.top()] >= v) stk.pop(); |
| 301 | + if (!stk.empty()) right[i] = stk.top(); |
| 302 | + stk.push(i); |
| 303 | + } |
| 304 | + for (int i = 0; i < n; ++i) |
| 305 | + { |
| 306 | + int v = nums[i]; |
| 307 | + int k = right[i] - left[i] - 1; |
| 308 | + if (v > threshold / k) return k; |
| 309 | + } |
| 310 | + return -1; |
| 311 | + } |
| 312 | +}; |
| 313 | +``` |
| 314 | + |
| 315 | +### **Go** |
| 316 | + |
| 317 | +```go |
| 318 | +func validSubarraySize(nums []int, threshold int) int { |
| 319 | + n := len(nums) |
| 320 | + p := make([]int, n) |
| 321 | + size := make([]int, n) |
| 322 | + for i := range p { |
| 323 | + p[i] = i |
| 324 | + size[i] = 1 |
| 325 | + } |
| 326 | + var find func(int) int |
| 327 | + find = func(x int) int { |
| 328 | + if p[x] != x { |
| 329 | + p[x] = find(p[x]) |
| 330 | + } |
| 331 | + return p[x] |
| 332 | + } |
| 333 | + merge := func(a, b int) { |
| 334 | + pa, pb := find(a), find(b) |
| 335 | + if pa == pb { |
| 336 | + return |
| 337 | + } |
| 338 | + p[pa] = pb |
| 339 | + size[pb] += size[pa] |
| 340 | + } |
| 341 | + |
| 342 | + arr := make([][]int, n) |
| 343 | + for i, v := range nums { |
| 344 | + arr[i] = []int{v, i} |
| 345 | + } |
| 346 | + sort.Slice(arr, func(i, j int) bool { |
| 347 | + return arr[i][0] > arr[j][0] |
| 348 | + }) |
| 349 | + vis := make([]bool, n) |
| 350 | + for _, e := range arr { |
| 351 | + v, i := e[0], e[1] |
| 352 | + if i > 0 && vis[i-1] { |
| 353 | + merge(i, i-1) |
| 354 | + } |
| 355 | + if i < n-1 && vis[i+1] { |
| 356 | + merge(i, i+1) |
| 357 | + } |
| 358 | + if v > threshold/size[find(i)] { |
| 359 | + return size[find(i)] |
| 360 | + } |
| 361 | + vis[i] = true |
| 362 | + } |
| 363 | + return -1 |
| 364 | +} |
| 365 | +``` |
64 | 366 |
|
| 367 | +```go |
| 368 | +func validSubarraySize(nums []int, threshold int) int { |
| 369 | + n := len(nums) |
| 370 | + left := make([]int, n) |
| 371 | + right := make([]int, n) |
| 372 | + for i := range left { |
| 373 | + left[i] = -1 |
| 374 | + right[i] = n |
| 375 | + } |
| 376 | + var stk []int |
| 377 | + for i, v := range nums { |
| 378 | + for len(stk) > 0 && nums[stk[len(stk)-1]] >= v { |
| 379 | + stk = stk[:len(stk)-1] |
| 380 | + } |
| 381 | + if len(stk) > 0 { |
| 382 | + left[i] = stk[len(stk)-1] |
| 383 | + } |
| 384 | + stk = append(stk, i) |
| 385 | + } |
| 386 | + stk = []int{} |
| 387 | + for i := n - 1; i >= 0; i-- { |
| 388 | + v := nums[i] |
| 389 | + for len(stk) > 0 && nums[stk[len(stk)-1]] >= v { |
| 390 | + stk = stk[:len(stk)-1] |
| 391 | + } |
| 392 | + if len(stk) > 0 { |
| 393 | + right[i] = stk[len(stk)-1] |
| 394 | + } |
| 395 | + stk = append(stk, i) |
| 396 | + } |
| 397 | + for i, v := range nums { |
| 398 | + k := right[i] - left[i] - 1 |
| 399 | + if v > threshold/k { |
| 400 | + return k |
| 401 | + } |
| 402 | + } |
| 403 | + return -1 |
| 404 | +} |
65 | 405 | ```
|
66 | 406 |
|
67 | 407 | ### **TypeScript**
|
|
0 commit comments