|
1 |
| -use std::collections::{BTreeMap, VecDeque}; |
2 |
| - |
3 |
| -type Graph<V, E> = BTreeMap<V, Vec<(V, E)>>; |
4 |
| - |
5 |
| -/// returns topological sort of the graph using Kahn's algorithm |
6 |
| -pub fn topological_sort<V: Ord + Copy, E: Ord>(graph: &Graph<V, E>) -> Vec<V> { |
7 |
| - let mut visited = BTreeMap::new(); |
8 |
| - let mut degree = BTreeMap::new(); |
9 |
| - for u in graph.keys() { |
10 |
| - degree.insert(*u, 0); |
11 |
| - for (v, _) in graph.get(u).unwrap() { |
12 |
| - let entry = degree.entry(*v).or_insert(0); |
13 |
| - *entry += 1; |
14 |
| - } |
| 1 | +use std::collections::HashMap; |
| 2 | +use std::collections::VecDeque; |
| 3 | +use std::hash::Hash; |
| 4 | + |
| 5 | +#[derive(Debug, Eq, PartialEq)] |
| 6 | +pub enum TopoligicalSortError { |
| 7 | + CycleDetected, |
| 8 | +} |
| 9 | + |
| 10 | +type TopologicalSortResult<Node> = Result<Vec<Node>, TopoligicalSortError>; |
| 11 | + |
| 12 | +/// Given a directed graph, modeled as a list of edges from source to destination |
| 13 | +/// Uses Kahn's algorithm to either: |
| 14 | +/// return the topological sort of the graph |
| 15 | +/// or detect if there's any cycle |
| 16 | +pub fn topological_sort<Node: Hash + Eq + Copy>( |
| 17 | + edges: &Vec<(Node, Node)>, |
| 18 | +) -> TopologicalSortResult<Node> { |
| 19 | + // Preparation: |
| 20 | + // Build a map of edges, organised from source to destinations |
| 21 | + // Also, count the number of incoming edges by node |
| 22 | + let mut edges_by_source: HashMap<Node, Vec<Node>> = HashMap::default(); |
| 23 | + let mut incoming_edges_count: HashMap<Node, usize> = HashMap::default(); |
| 24 | + for (source, destination) in edges { |
| 25 | + incoming_edges_count.entry(*source).or_insert(0); // if we haven't seen this node yet, mark it as having 0 incoming nodes |
| 26 | + edges_by_source // add destination to the list of outgoing edges from source |
| 27 | + .entry(*source) |
| 28 | + .or_insert_with(Vec::default) |
| 29 | + .push(*destination); |
| 30 | + // then make destination have one more incoming edge |
| 31 | + *incoming_edges_count.entry(*destination).or_insert(0) += 1; |
15 | 32 | }
|
16 |
| - let mut queue = VecDeque::new(); |
17 |
| - for (u, d) in degree.iter() { |
18 |
| - if *d == 0 { |
19 |
| - queue.push_back(*u); |
20 |
| - visited.insert(*u, true); |
| 33 | + |
| 34 | + // Now Kahn's algorithm: |
| 35 | + // Add nodes that have no incoming edges to a queue |
| 36 | + let mut no_incoming_edges_q = VecDeque::default(); |
| 37 | + for (node, count) in &incoming_edges_count { |
| 38 | + if *count == 0 { |
| 39 | + no_incoming_edges_q.push_back(*node); |
21 | 40 | }
|
22 | 41 | }
|
23 |
| - let mut ret = Vec::new(); |
24 |
| - while let Some(u) = queue.pop_front() { |
25 |
| - ret.push(u); |
26 |
| - if let Some(from_u) = graph.get(&u) { |
27 |
| - for (v, _) in from_u { |
28 |
| - *degree.get_mut(v).unwrap() -= 1; |
29 |
| - if *degree.get(v).unwrap() == 0 { |
30 |
| - queue.push_back(*v); |
31 |
| - visited.insert(*v, true); |
| 42 | + // For each node in this "O-incoming-edge-queue" |
| 43 | + let mut sorted = Vec::default(); |
| 44 | + while let Some(no_incoming_edges) = no_incoming_edges_q.pop_back() { |
| 45 | + sorted.push(no_incoming_edges); // since the node has no dependency, it can be safely pushed to the sorted result |
| 46 | + incoming_edges_count.remove(&no_incoming_edges); |
| 47 | + // For each node having this one as dependency |
| 48 | + for neighbour in edges_by_source.get(&no_incoming_edges).unwrap_or(&vec![]) { |
| 49 | + if let Some(count) = incoming_edges_count.get_mut(neighbour) { |
| 50 | + *count -= 1; // decrement the count of incoming edges for the dependent node |
| 51 | + if *count == 0 { |
| 52 | + // `node` was the last node `neighbour` was dependent on |
| 53 | + incoming_edges_count.remove(neighbour); // let's remove it from the map, so that we can know if we covered the whole graph |
| 54 | + no_incoming_edges_q.push_front(*neighbour); // it has no incoming edges anymore => push it to the queue |
32 | 55 | }
|
33 | 56 | }
|
34 | 57 | }
|
35 | 58 | }
|
36 |
| - ret |
| 59 | + if incoming_edges_count.is_empty() { |
| 60 | + // we have visited every node |
| 61 | + Ok(sorted) |
| 62 | + } else { |
| 63 | + // some nodes haven't been visited, meaning there's a cycle in the graph |
| 64 | + Err(TopoligicalSortError::CycleDetected) |
| 65 | + } |
37 | 66 | }
|
38 | 67 |
|
39 | 68 | #[cfg(test)]
|
40 | 69 | mod tests {
|
41 |
| - use std::collections::BTreeMap; |
| 70 | + use super::topological_sort; |
| 71 | + use crate::graph::topological_sort::TopoligicalSortError; |
42 | 72 |
|
43 |
| - use super::{topological_sort, Graph}; |
44 |
| - fn add_edge<V: Ord + Copy, E: Ord>(graph: &mut Graph<V, E>, from: V, to: V, weight: E) { |
45 |
| - let edges = graph.entry(from).or_insert(Vec::new()); |
46 |
| - edges.push((to, weight)); |
| 73 | + fn is_valid_sort<Node: Eq>(sorted: &[Node], graph: &[(Node, Node)]) -> bool { |
| 74 | + for (source, dest) in graph { |
| 75 | + let source_pos = sorted.iter().position(|node| node == source); |
| 76 | + let dest_pos = sorted.iter().position(|node| node == dest); |
| 77 | + match (source_pos, dest_pos) { |
| 78 | + (Some(src), Some(dst)) if src < dst => {} |
| 79 | + _ => { |
| 80 | + return false; |
| 81 | + } |
| 82 | + }; |
| 83 | + } |
| 84 | + true |
47 | 85 | }
|
48 | 86 |
|
49 | 87 | #[test]
|
50 | 88 | fn it_works() {
|
51 |
| - let mut graph = BTreeMap::new(); |
52 |
| - add_edge(&mut graph, 1, 2, 1); |
53 |
| - add_edge(&mut graph, 1, 3, 1); |
54 |
| - add_edge(&mut graph, 2, 3, 1); |
55 |
| - add_edge(&mut graph, 3, 4, 1); |
56 |
| - add_edge(&mut graph, 4, 5, 1); |
57 |
| - add_edge(&mut graph, 5, 6, 1); |
58 |
| - add_edge(&mut graph, 6, 7, 1); |
59 |
| - |
60 |
| - assert_eq!(topological_sort(&graph), vec![1, 2, 3, 4, 5, 6, 7]); |
| 89 | + let graph = vec![(1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)]; |
| 90 | + let sort = topological_sort(&graph); |
| 91 | + assert!(sort.is_ok()); |
| 92 | + let sort = sort.unwrap(); |
| 93 | + assert!(is_valid_sort(&sort, &graph)); |
| 94 | + assert_eq!(sort, vec![1, 2, 3, 4, 5, 6, 7]); |
| 95 | + } |
| 96 | + |
| 97 | + #[test] |
| 98 | + fn test_wikipedia_example() { |
| 99 | + let graph = vec![ |
| 100 | + (5, 11), |
| 101 | + (7, 11), |
| 102 | + (7, 8), |
| 103 | + (3, 8), |
| 104 | + (3, 10), |
| 105 | + (11, 2), |
| 106 | + (11, 9), |
| 107 | + (11, 10), |
| 108 | + (8, 9), |
| 109 | + ]; |
| 110 | + let sort = topological_sort(&graph); |
| 111 | + assert!(sort.is_ok()); |
| 112 | + let sort = sort.unwrap(); |
| 113 | + assert!(is_valid_sort(&sort, &graph)); |
| 114 | + } |
| 115 | + |
| 116 | + #[test] |
| 117 | + fn test_cyclic_graph() { |
| 118 | + let graph = vec![(1, 2), (2, 3), (3, 4), (4, 5), (4, 2)]; |
| 119 | + let sort = topological_sort(&graph); |
| 120 | + assert!(sort.is_err()); |
| 121 | + assert_eq!(sort.err().unwrap(), TopoligicalSortError::CycleDetected); |
61 | 122 | }
|
62 | 123 | }
|
0 commit comments