diff --git a/DIRECTORY.md b/DIRECTORY.md index 01667c9feee8..f6d6cb463faa 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -351,7 +351,7 @@ * [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py) * [Longest Common Substring](dynamic_programming/longest_common_substring.py) * [Longest Increasing Subsequence](dynamic_programming/longest_increasing_subsequence.py) - * [Longest Increasing Subsequence O(Nlogn)](dynamic_programming/longest_increasing_subsequence_o(nlogn).py) + * [Longest Increasing Subsequence O Nlogn](dynamic_programming/longest_increasing_subsequence_o_nlogn.py) * [Longest Palindromic Subsequence](dynamic_programming/longest_palindromic_subsequence.py) * [Matrix Chain Multiplication](dynamic_programming/matrix_chain_multiplication.py) * [Matrix Chain Order](dynamic_programming/matrix_chain_order.py) @@ -465,7 +465,7 @@ * [Dijkstra Alternate](graphs/dijkstra_alternate.py) * [Dijkstra Binary Grid](graphs/dijkstra_binary_grid.py) * [Dinic](graphs/dinic.py) - * [Directed And Undirected (Weighted) Graph](graphs/directed_and_undirected_(weighted)_graph.py) + * [Directed And Undirected Weighted Graph](graphs/directed_and_undirected_weighted_graph.py) * [Edmonds Karp Multiple Source And Sink](graphs/edmonds_karp_multiple_source_and_sink.py) * [Eulerian Path And Circuit For Undirected Graph](graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [Even Tree](graphs/even_tree.py) @@ -792,7 +792,6 @@ * [Minimum Cut](networking_flow/minimum_cut.py) ## Neural Network - * [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py) * Activation Functions * [Binary Step](neural_network/activation_functions/binary_step.py) * [Exponential Linear Unit](neural_network/activation_functions/exponential_linear_unit.py) @@ -809,6 +808,7 @@ * [Convolution Neural Network](neural_network/convolution_neural_network.py) * [Input Data](neural_network/input_data.py) * [Simple Neural Network](neural_network/simple_neural_network.py) + * [Two Hidden Layers Neural Network](neural_network/two_hidden_layers_neural_network.py) ## Other * [Activity Selection](other/activity_selection.py) diff --git a/backtracking/crossword_puzzle_solver.py b/backtracking/crossword_puzzle_solver.py index b9c01c4efea9..e702c7e52153 100644 --- a/backtracking/crossword_puzzle_solver.py +++ b/backtracking/crossword_puzzle_solver.py @@ -28,9 +28,8 @@ def is_valid( if vertical: if row + i >= len(puzzle) or puzzle[row + i][col] != "": return False - else: - if col + i >= len(puzzle[0]) or puzzle[row][col + i] != "": - return False + elif col + i >= len(puzzle[0]) or puzzle[row][col + i] != "": + return False return True diff --git a/cellular_automata/game_of_life.py b/cellular_automata/game_of_life.py index 67e647d6475b..76276b272d65 100644 --- a/cellular_automata/game_of_life.py +++ b/cellular_automata/game_of_life.py @@ -101,9 +101,8 @@ def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool: state = True elif alive > 3: state = False - else: - if alive == 3: - state = True + elif alive == 3: + state = True return state diff --git a/ciphers/decrypt_caesar_with_chi_squared.py b/ciphers/decrypt_caesar_with_chi_squared.py index 6c36860207cd..10832203e531 100644 --- a/ciphers/decrypt_caesar_with_chi_squared.py +++ b/ciphers/decrypt_caesar_with_chi_squared.py @@ -206,20 +206,19 @@ def decrypt_caesar_with_chi_squared( # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value - else: - if letter.lower() in frequencies: - # Get the amount of times the letter occurs in the message - occurrences = decrypted_with_shift.count(letter) + elif letter.lower() in frequencies: + # Get the amount of times the letter occurs in the message + occurrences = decrypted_with_shift.count(letter) - # Get the excepcted amount of times the letter should appear based - # on letter frequencies - expected = frequencies[letter] * occurrences + # Get the excepcted amount of times the letter should appear based + # on letter frequencies + expected = frequencies[letter] * occurrences - # Complete the chi squared statistic formula - chi_letter_value = ((occurrences - expected) ** 2) / expected + # Complete the chi squared statistic formula + chi_letter_value = ((occurrences - expected) ** 2) / expected - # Add the margin of error to the total chi squared statistic - chi_squared_statistic += chi_letter_value + # Add the margin of error to the total chi squared statistic + chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary chi_squared_statistic_values[shift] = ( diff --git a/ciphers/hill_cipher.py b/ciphers/hill_cipher.py index ea337a72dc04..33b2529f017b 100644 --- a/ciphers/hill_cipher.py +++ b/ciphers/hill_cipher.py @@ -38,7 +38,7 @@ import string -import numpy +import numpy as np from maths.greatest_common_divisor import greatest_common_divisor @@ -49,11 +49,11 @@ class HillCipher: # i.e. a total of 36 characters # take x and return x % len(key_string) - modulus = numpy.vectorize(lambda x: x % 36) + modulus = np.vectorize(lambda x: x % 36) - to_int = numpy.vectorize(round) + to_int = np.vectorize(round) - def __init__(self, encrypt_key: numpy.ndarray) -> None: + def __init__(self, encrypt_key: np.ndarray) -> None: """ encrypt_key is an NxN numpy array """ @@ -63,7 +63,7 @@ def __init__(self, encrypt_key: numpy.ndarray) -> None: def replace_letters(self, letter: str) -> int: """ - >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) + >>> hill_cipher = HillCipher(np.array([[2, 5], [1, 6]])) >>> hill_cipher.replace_letters('T') 19 >>> hill_cipher.replace_letters('0') @@ -73,7 +73,7 @@ def replace_letters(self, letter: str) -> int: def replace_digits(self, num: int) -> str: """ - >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) + >>> hill_cipher = HillCipher(np.array([[2, 5], [1, 6]])) >>> hill_cipher.replace_digits(19) 'T' >>> hill_cipher.replace_digits(26) @@ -83,10 +83,10 @@ def replace_digits(self, num: int) -> str: def check_determinant(self) -> None: """ - >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) + >>> hill_cipher = HillCipher(np.array([[2, 5], [1, 6]])) >>> hill_cipher.check_determinant() """ - det = round(numpy.linalg.det(self.encrypt_key)) + det = round(np.linalg.det(self.encrypt_key)) if det < 0: det = det % len(self.key_string) @@ -101,7 +101,7 @@ def check_determinant(self) -> None: def process_text(self, text: str) -> str: """ - >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) + >>> hill_cipher = HillCipher(np.array([[2, 5], [1, 6]])) >>> hill_cipher.process_text('Testing Hill Cipher') 'TESTINGHILLCIPHERR' >>> hill_cipher.process_text('hello') @@ -117,7 +117,7 @@ def process_text(self, text: str) -> str: def encrypt(self, text: str) -> str: """ - >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) + >>> hill_cipher = HillCipher(np.array([[2, 5], [1, 6]])) >>> hill_cipher.encrypt('testing hill cipher') 'WHXYJOLM9C6XT085LL' >>> hill_cipher.encrypt('hello') @@ -129,7 +129,7 @@ def encrypt(self, text: str) -> str: for i in range(0, len(text) - self.break_key + 1, self.break_key): batch = text[i : i + self.break_key] vec = [self.replace_letters(char) for char in batch] - batch_vec = numpy.array([vec]).T + batch_vec = np.array([vec]).T batch_encrypted = self.modulus(self.encrypt_key.dot(batch_vec)).T.tolist()[ 0 ] @@ -140,14 +140,14 @@ def encrypt(self, text: str) -> str: return encrypted - def make_decrypt_key(self) -> numpy.ndarray: + def make_decrypt_key(self) -> np.ndarray: """ - >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) + >>> hill_cipher = HillCipher(np.array([[2, 5], [1, 6]])) >>> hill_cipher.make_decrypt_key() array([[ 6, 25], [ 5, 26]]) """ - det = round(numpy.linalg.det(self.encrypt_key)) + det = round(np.linalg.det(self.encrypt_key)) if det < 0: det = det % len(self.key_string) @@ -158,16 +158,14 @@ def make_decrypt_key(self) -> numpy.ndarray: break inv_key = ( - det_inv - * numpy.linalg.det(self.encrypt_key) - * numpy.linalg.inv(self.encrypt_key) + det_inv * np.linalg.det(self.encrypt_key) * np.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(inv_key)) def decrypt(self, text: str) -> str: """ - >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) + >>> hill_cipher = HillCipher(np.array([[2, 5], [1, 6]])) >>> hill_cipher.decrypt('WHXYJOLM9C6XT085LL') 'TESTINGHILLCIPHERR' >>> hill_cipher.decrypt('85FF00') @@ -180,7 +178,7 @@ def decrypt(self, text: str) -> str: for i in range(0, len(text) - self.break_key + 1, self.break_key): batch = text[i : i + self.break_key] vec = [self.replace_letters(char) for char in batch] - batch_vec = numpy.array([vec]).T + batch_vec = np.array([vec]).T batch_decrypted = self.modulus(decrypt_key.dot(batch_vec)).T.tolist()[0] decrypted_batch = "".join( self.replace_digits(num) for num in batch_decrypted @@ -199,7 +197,7 @@ def main() -> None: row = [int(x) for x in input().split()] hill_matrix.append(row) - hc = HillCipher(numpy.array(hill_matrix)) + hc = HillCipher(np.array(hill_matrix)) print("Would you like to encrypt or decrypt some text? (1 or 2)") option = input("\n1. Encrypt\n2. Decrypt\n") diff --git a/data_structures/binary_tree/avl_tree.py b/data_structures/binary_tree/avl_tree.py index 041ed7e36d16..9fca7237404c 100644 --- a/data_structures/binary_tree/avl_tree.py +++ b/data_structures/binary_tree/avl_tree.py @@ -215,11 +215,11 @@ def del_node(root: MyNode, data: Any) -> MyNode | None: return root else: root.set_left(del_node(left_child, data)) - else: # root.get_data() < data - if right_child is None: - return root - else: - root.set_right(del_node(right_child, data)) + # root.get_data() < data + elif right_child is None: + return root + else: + root.set_right(del_node(right_child, data)) if get_height(right_child) - get_height(left_child) == 2: assert right_child is not None diff --git a/data_structures/binary_tree/binary_search_tree.py b/data_structures/binary_tree/binary_search_tree.py index 08a60a12065d..090e3e25fe6d 100644 --- a/data_structures/binary_tree/binary_search_tree.py +++ b/data_structures/binary_tree/binary_search_tree.py @@ -185,12 +185,11 @@ def __insert(self, value) -> None: break else: parent_node = parent_node.left + elif parent_node.right is None: + parent_node.right = new_node + break else: - if parent_node.right is None: - parent_node.right = new_node - break - else: - parent_node = parent_node.right + parent_node = parent_node.right new_node.parent = parent_node def insert(self, *values) -> Self: diff --git a/data_structures/binary_tree/binary_search_tree_recursive.py b/data_structures/binary_tree/binary_search_tree_recursive.py index 6af1b053f42c..d94ac5253360 100644 --- a/data_structures/binary_tree/binary_search_tree_recursive.py +++ b/data_structures/binary_tree/binary_search_tree_recursive.py @@ -74,14 +74,13 @@ def put(self, label: int) -> None: def _put(self, node: Node | None, label: int, parent: Node | None = None) -> Node: if node is None: node = Node(label, parent) + elif label < node.label: + node.left = self._put(node.left, label, node) + elif label > node.label: + node.right = self._put(node.right, label, node) else: - if label < node.label: - node.left = self._put(node.left, label, node) - elif label > node.label: - node.right = self._put(node.right, label, node) - else: - msg = f"Node with label {label} already exists" - raise ValueError(msg) + msg = f"Node with label {label} already exists" + raise ValueError(msg) return node @@ -106,11 +105,10 @@ def _search(self, node: Node | None, label: int) -> Node: if node is None: msg = f"Node with label {label} does not exist" raise ValueError(msg) - else: - if label < node.label: - node = self._search(node.left, label) - elif label > node.label: - node = self._search(node.right, label) + elif label < node.label: + node = self._search(node.left, label) + elif label > node.label: + node = self._search(node.right, label) return node diff --git a/data_structures/binary_tree/binary_tree_traversals.py b/data_structures/binary_tree/binary_tree_traversals.py index 2b33cdca4fed..49c208335b2c 100644 --- a/data_structures/binary_tree/binary_tree_traversals.py +++ b/data_structures/binary_tree/binary_tree_traversals.py @@ -97,6 +97,8 @@ def level_order(root: Node | None) -> Generator[int, None, None]: """ Returns a list of nodes value from a whole binary tree in Level Order Traverse. Level Order traverse: Visit nodes of the tree level-by-level. + >>> list(level_order(make_tree())) + [1, 2, 3, 4, 5] """ if root is None: @@ -120,6 +122,10 @@ def get_nodes_from_left_to_right( """ Returns a list of nodes value from a particular level: Left to right direction of the binary tree. + >>> list(get_nodes_from_left_to_right(make_tree(), 1)) + [1] + >>> list(get_nodes_from_left_to_right(make_tree(), 2)) + [2, 3] """ def populate_output(root: Node | None, level: int) -> Generator[int, None, None]: @@ -140,10 +146,14 @@ def get_nodes_from_right_to_left( """ Returns a list of nodes value from a particular level: Right to left direction of the binary tree. + >>> list(get_nodes_from_right_to_left(make_tree(), 1)) + [1] + >>> list(get_nodes_from_right_to_left(make_tree(), 2)) + [3, 2] """ def populate_output(root: Node | None, level: int) -> Generator[int, None, None]: - if root is None: + if not root: return if level == 1: yield root.data @@ -158,6 +168,8 @@ def zigzag(root: Node | None) -> Generator[int, None, None]: """ ZigZag traverse: Returns a list of nodes value from left to right and right to left, alternatively. + >>> list(zigzag(make_tree())) + [1, 3, 2, 4, 5] """ if root is None: return diff --git a/data_structures/binary_tree/red_black_tree.py b/data_structures/binary_tree/red_black_tree.py index 3b5845cd957b..bdd808c828e0 100644 --- a/data_structures/binary_tree/red_black_tree.py +++ b/data_structures/binary_tree/red_black_tree.py @@ -107,12 +107,11 @@ def insert(self, label: int) -> RedBlackTree: else: self.left = RedBlackTree(label, 1, self) self.left._insert_repair() + elif self.right: + self.right.insert(label) else: - if self.right: - self.right.insert(label) - else: - self.right = RedBlackTree(label, 1, self) - self.right._insert_repair() + self.right = RedBlackTree(label, 1, self) + self.right._insert_repair() return self.parent or self def _insert_repair(self) -> None: @@ -178,36 +177,34 @@ def remove(self, label: int) -> RedBlackTree: # noqa: PLR0912 self.parent.left = None else: self.parent.right = None - else: - # The node is black - if child is None: - # This node and its child are black - if self.parent is None: - # The tree is now empty - return RedBlackTree(None) - else: - self._remove_repair() - if self.is_left(): - self.parent.left = None - else: - self.parent.right = None - self.parent = None + # The node is black + elif child is None: + # This node and its child are black + if self.parent is None: + # The tree is now empty + return RedBlackTree(None) else: - # This node is black and its child is red - # Move the child node here and make it black - self.label = child.label - self.left = child.left - self.right = child.right - if self.left: - self.left.parent = self - if self.right: - self.right.parent = self + self._remove_repair() + if self.is_left(): + self.parent.left = None + else: + self.parent.right = None + self.parent = None + else: + # This node is black and its child is red + # Move the child node here and make it black + self.label = child.label + self.left = child.left + self.right = child.right + if self.left: + self.left.parent = self + if self.right: + self.right.parent = self elif self.label is not None and self.label > label: if self.left: self.left.remove(label) - else: - if self.right: - self.right.remove(label) + elif self.right: + self.right.remove(label) return self.parent or self def _remove_repair(self) -> None: @@ -369,11 +366,10 @@ def search(self, label: int) -> RedBlackTree | None: return None else: return self.right.search(label) + elif self.left is None: + return None else: - if self.left is None: - return None - else: - return self.left.search(label) + return self.left.search(label) def floor(self, label: int) -> int | None: """Returns the largest element in this tree which is at most label. diff --git a/data_structures/binary_tree/treap.py b/data_structures/binary_tree/treap.py index a53ac566ed54..e7ddf931b83a 100644 --- a/data_structures/binary_tree/treap.py +++ b/data_structures/binary_tree/treap.py @@ -43,22 +43,21 @@ def split(root: Node | None, value: int) -> tuple[Node | None, Node | None]: return None, None elif root.value is None: return None, None + elif value < root.value: + """ + Right tree's root will be current node. + Now we split(with the same value) current node's left son + Left tree: left part of that split + Right tree's left son: right part of that split + """ + left, root.left = split(root.left, value) + return left, root else: - if value < root.value: - """ - Right tree's root will be current node. - Now we split(with the same value) current node's left son - Left tree: left part of that split - Right tree's left son: right part of that split - """ - left, root.left = split(root.left, value) - return left, root - else: - """ - Just symmetric to previous case - """ - root.right, right = split(root.right, value) - return root, right + """ + Just symmetric to previous case + """ + root.right, right = split(root.right, value) + return root, right def merge(left: Node | None, right: Node | None) -> Node | None: diff --git a/data_structures/heap/max_heap.py b/data_structures/heap/max_heap.py index fbc8eed09226..5a9f9cf88433 100644 --- a/data_structures/heap/max_heap.py +++ b/data_structures/heap/max_heap.py @@ -40,11 +40,10 @@ def __swap_down(self, i: int) -> None: while self.__size >= 2 * i: if 2 * i + 1 > self.__size: bigger_child = 2 * i + elif self.__heap[2 * i] > self.__heap[2 * i + 1]: + bigger_child = 2 * i else: - if self.__heap[2 * i] > self.__heap[2 * i + 1]: - bigger_child = 2 * i - else: - bigger_child = 2 * i + 1 + bigger_child = 2 * i + 1 temporary = self.__heap[i] if self.__heap[i] < self.__heap[bigger_child]: self.__heap[i] = self.__heap[bigger_child] diff --git a/data_structures/stacks/infix_to_prefix_conversion.py b/data_structures/stacks/infix_to_prefix_conversion.py index beff421c0cfa..878473b93c19 100644 --- a/data_structures/stacks/infix_to_prefix_conversion.py +++ b/data_structures/stacks/infix_to_prefix_conversion.py @@ -95,13 +95,12 @@ def infix_2_postfix(infix: str) -> str: while stack[-1] != "(": post_fix.append(stack.pop()) # Pop stack & add the content to Postfix stack.pop() - else: - if len(stack) == 0: - stack.append(x) # If stack is empty, push x to stack - else: # while priority of x is not > priority of element in the stack - while stack and stack[-1] != "(" and priority[x] <= priority[stack[-1]]: - post_fix.append(stack.pop()) # pop stack & add to Postfix - stack.append(x) # push x to stack + elif len(stack) == 0: + stack.append(x) # If stack is empty, push x to stack + else: # while priority of x is not > priority of element in the stack + while stack and stack[-1] != "(" and priority[x] <= priority[stack[-1]]: + post_fix.append(stack.pop()) # pop stack & add to Postfix + stack.append(x) # push x to stack print( x.center(8), diff --git a/data_structures/trie/radix_tree.py b/data_structures/trie/radix_tree.py index fadc50cb49a7..caf566a6ce30 100644 --- a/data_structures/trie/radix_tree.py +++ b/data_structures/trie/radix_tree.py @@ -153,31 +153,30 @@ def delete(self, word: str) -> bool: # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(remaining_word) + # If it is not a leaf, we don't have to delete + elif not incoming_node.is_leaf: + return False else: - # If it is not a leaf, we don't have to delete - if not incoming_node.is_leaf: - return False + # We delete the nodes if no edges go from it + if len(incoming_node.nodes) == 0: + del self.nodes[word[0]] + # We merge the current node with its only child + if len(self.nodes) == 1 and not self.is_leaf: + merging_node = next(iter(self.nodes.values())) + self.is_leaf = merging_node.is_leaf + self.prefix += merging_node.prefix + self.nodes = merging_node.nodes + # If there is more than 1 edge, we just mark it as non-leaf + elif len(incoming_node.nodes) > 1: + incoming_node.is_leaf = False + # If there is 1 edge, we merge it with its child else: - # We delete the nodes if no edges go from it - if len(incoming_node.nodes) == 0: - del self.nodes[word[0]] - # We merge the current node with its only child - if len(self.nodes) == 1 and not self.is_leaf: - merging_node = next(iter(self.nodes.values())) - self.is_leaf = merging_node.is_leaf - self.prefix += merging_node.prefix - self.nodes = merging_node.nodes - # If there is more than 1 edge, we just mark it as non-leaf - elif len(incoming_node.nodes) > 1: - incoming_node.is_leaf = False - # If there is 1 edge, we merge it with its child - else: - merging_node = next(iter(incoming_node.nodes.values())) - incoming_node.is_leaf = merging_node.is_leaf - incoming_node.prefix += merging_node.prefix - incoming_node.nodes = merging_node.nodes - - return True + merging_node = next(iter(incoming_node.nodes.values())) + incoming_node.is_leaf = merging_node.is_leaf + incoming_node.prefix += merging_node.prefix + incoming_node.nodes = merging_node.nodes + + return True def print_tree(self, height: int = 0) -> None: """Print the tree diff --git a/divide_and_conquer/convex_hull.py b/divide_and_conquer/convex_hull.py index a5d8b713bdbc..93f6daf1f88c 100644 --- a/divide_and_conquer/convex_hull.py +++ b/divide_and_conquer/convex_hull.py @@ -274,14 +274,13 @@ def convex_hull_bf(points: list[Point]) -> list[Point]: points_left_of_ij = True elif det_k < 0: points_right_of_ij = True - else: - # point[i], point[j], point[k] all lie on a straight line - # if point[k] is to the left of point[i] or it's to the - # right of point[j], then point[i], point[j] cannot be - # part of the convex hull of A - if points[k] < points[i] or points[k] > points[j]: - ij_part_of_convex_hull = False - break + # point[i], point[j], point[k] all lie on a straight line + # if point[k] is to the left of point[i] or it's to the + # right of point[j], then point[i], point[j] cannot be + # part of the convex hull of A + elif points[k] < points[i] or points[k] > points[j]: + ij_part_of_convex_hull = False + break if points_left_of_ij and points_right_of_ij: ij_part_of_convex_hull = False diff --git a/dynamic_programming/longest_increasing_subsequence_o(nlogn).py b/dynamic_programming/longest_increasing_subsequence_o_nlogn.py similarity index 100% rename from dynamic_programming/longest_increasing_subsequence_o(nlogn).py rename to dynamic_programming/longest_increasing_subsequence_o_nlogn.py diff --git a/fractals/julia_sets.py b/fractals/julia_sets.py index 482e1eddfecc..1eef4573ba19 100644 --- a/fractals/julia_sets.py +++ b/fractals/julia_sets.py @@ -25,8 +25,8 @@ from collections.abc import Callable from typing import Any -import numpy -from matplotlib import pyplot +import matplotlib.pyplot as plt +import numpy as np c_cauliflower = 0.25 + 0.0j c_polynomial_1 = -0.4 + 0.6j @@ -37,22 +37,20 @@ nb_pixels = 666 -def eval_exponential(c_parameter: complex, z_values: numpy.ndarray) -> numpy.ndarray: +def eval_exponential(c_parameter: complex, z_values: np.ndarray) -> np.ndarray: """ Evaluate $e^z + c$. >>> eval_exponential(0, 0) 1.0 - >>> abs(eval_exponential(1, numpy.pi*1.j)) < 1e-15 + >>> abs(eval_exponential(1, np.pi*1.j)) < 1e-15 True >>> abs(eval_exponential(1.j, 0)-1-1.j) < 1e-15 True """ - return numpy.exp(z_values) + c_parameter + return np.exp(z_values) + c_parameter -def eval_quadratic_polynomial( - c_parameter: complex, z_values: numpy.ndarray -) -> numpy.ndarray: +def eval_quadratic_polynomial(c_parameter: complex, z_values: np.ndarray) -> np.ndarray: """ >>> eval_quadratic_polynomial(0, 2) 4 @@ -66,7 +64,7 @@ def eval_quadratic_polynomial( return z_values * z_values + c_parameter -def prepare_grid(window_size: float, nb_pixels: int) -> numpy.ndarray: +def prepare_grid(window_size: float, nb_pixels: int) -> np.ndarray: """ Create a grid of complex values of size nb_pixels*nb_pixels with real and imaginary parts ranging from -window_size to window_size (inclusive). @@ -77,20 +75,20 @@ def prepare_grid(window_size: float, nb_pixels: int) -> numpy.ndarray: [ 0.-1.j, 0.+0.j, 0.+1.j], [ 1.-1.j, 1.+0.j, 1.+1.j]]) """ - x = numpy.linspace(-window_size, window_size, nb_pixels) + x = np.linspace(-window_size, window_size, nb_pixels) x = x.reshape((nb_pixels, 1)) - y = numpy.linspace(-window_size, window_size, nb_pixels) + y = np.linspace(-window_size, window_size, nb_pixels) y = y.reshape((1, nb_pixels)) return x + 1.0j * y def iterate_function( - eval_function: Callable[[Any, numpy.ndarray], numpy.ndarray], + eval_function: Callable[[Any, np.ndarray], np.ndarray], function_params: Any, nb_iterations: int, - z_0: numpy.ndarray, + z_0: np.ndarray, infinity: float | None = None, -) -> numpy.ndarray: +) -> np.ndarray: """ Iterate the function "eval_function" exactly nb_iterations times. The first argument of the function is a parameter which is contained in @@ -98,22 +96,22 @@ def iterate_function( values to iterate from. This function returns the final iterates. - >>> iterate_function(eval_quadratic_polynomial, 0, 3, numpy.array([0,1,2])).shape + >>> iterate_function(eval_quadratic_polynomial, 0, 3, np.array([0,1,2])).shape (3,) - >>> numpy.round(iterate_function(eval_quadratic_polynomial, + >>> np.round(iterate_function(eval_quadratic_polynomial, ... 0, ... 3, - ... numpy.array([0,1,2]))[0]) + ... np.array([0,1,2]))[0]) 0j - >>> numpy.round(iterate_function(eval_quadratic_polynomial, + >>> np.round(iterate_function(eval_quadratic_polynomial, ... 0, ... 3, - ... numpy.array([0,1,2]))[1]) + ... np.array([0,1,2]))[1]) (1+0j) - >>> numpy.round(iterate_function(eval_quadratic_polynomial, + >>> np.round(iterate_function(eval_quadratic_polynomial, ... 0, ... 3, - ... numpy.array([0,1,2]))[2]) + ... np.array([0,1,2]))[2]) (256+0j) """ @@ -121,8 +119,8 @@ def iterate_function( for _ in range(nb_iterations): z_n = eval_function(function_params, z_n) if infinity is not None: - numpy.nan_to_num(z_n, copy=False, nan=infinity) - z_n[abs(z_n) == numpy.inf] = infinity + np.nan_to_num(z_n, copy=False, nan=infinity) + z_n[abs(z_n) == np.inf] = infinity return z_n @@ -130,21 +128,21 @@ def show_results( function_label: str, function_params: Any, escape_radius: float, - z_final: numpy.ndarray, + z_final: np.ndarray, ) -> None: """ Plots of whether the absolute value of z_final is greater than the value of escape_radius. Adds the function_label and function_params to the title. - >>> show_results('80', 0, 1, numpy.array([[0,1,.5],[.4,2,1.1],[.2,1,1.3]])) + >>> show_results('80', 0, 1, np.array([[0,1,.5],[.4,2,1.1],[.2,1,1.3]])) """ abs_z_final = (abs(z_final)).transpose() abs_z_final[:, :] = abs_z_final[::-1, :] - pyplot.matshow(abs_z_final < escape_radius) - pyplot.title(f"Julia set of ${function_label}$, $c={function_params}$") - pyplot.show() + plt.matshow(abs_z_final < escape_radius) + plt.title(f"Julia set of ${function_label}$, $c={function_params}$") + plt.show() def ignore_overflow_warnings() -> None: diff --git a/fractals/koch_snowflake.py b/fractals/koch_snowflake.py index 30cd4b39c7c1..724b78f41a69 100644 --- a/fractals/koch_snowflake.py +++ b/fractals/koch_snowflake.py @@ -22,25 +22,25 @@ from __future__ import annotations -import matplotlib.pyplot as plt # type: ignore -import numpy +import matplotlib.pyplot as plt +import numpy as np # initial triangle of Koch snowflake -VECTOR_1 = numpy.array([0, 0]) -VECTOR_2 = numpy.array([0.5, 0.8660254]) -VECTOR_3 = numpy.array([1, 0]) +VECTOR_1 = np.array([0, 0]) +VECTOR_2 = np.array([0.5, 0.8660254]) +VECTOR_3 = np.array([1, 0]) INITIAL_VECTORS = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] # uncomment for simple Koch curve instead of Koch snowflake # INITIAL_VECTORS = [VECTOR_1, VECTOR_3] -def iterate(initial_vectors: list[numpy.ndarray], steps: int) -> list[numpy.ndarray]: +def iterate(initial_vectors: list[np.ndarray], steps: int) -> list[np.ndarray]: """ Go through the number of iterations determined by the argument "steps". Be careful with high values (above 5) since the time to calculate increases exponentially. - >>> iterate([numpy.array([0, 0]), numpy.array([1, 0])], 1) + >>> iterate([np.array([0, 0]), np.array([1, 0])], 1) [array([0, 0]), array([0.33333333, 0. ]), array([0.5 , \ 0.28867513]), array([0.66666667, 0. ]), array([1, 0])] """ @@ -50,13 +50,13 @@ def iterate(initial_vectors: list[numpy.ndarray], steps: int) -> list[numpy.ndar return vectors -def iteration_step(vectors: list[numpy.ndarray]) -> list[numpy.ndarray]: +def iteration_step(vectors: list[np.ndarray]) -> list[np.ndarray]: """ Loops through each pair of adjacent vectors. Each line between two adjacent vectors is divided into 4 segments by adding 3 additional vectors in-between the original two vectors. The vector in the middle is constructed through a 60 degree rotation so it is bent outwards. - >>> iteration_step([numpy.array([0, 0]), numpy.array([1, 0])]) + >>> iteration_step([np.array([0, 0]), np.array([1, 0])]) [array([0, 0]), array([0.33333333, 0. ]), array([0.5 , \ 0.28867513]), array([0.66666667, 0. ]), array([1, 0])] """ @@ -74,22 +74,22 @@ def iteration_step(vectors: list[numpy.ndarray]) -> list[numpy.ndarray]: return new_vectors -def rotate(vector: numpy.ndarray, angle_in_degrees: float) -> numpy.ndarray: +def rotate(vector: np.ndarray, angle_in_degrees: float) -> np.ndarray: """ Standard rotation of a 2D vector with a rotation matrix (see https://en.wikipedia.org/wiki/Rotation_matrix ) - >>> rotate(numpy.array([1, 0]), 60) + >>> rotate(np.array([1, 0]), 60) array([0.5 , 0.8660254]) - >>> rotate(numpy.array([1, 0]), 90) + >>> rotate(np.array([1, 0]), 90) array([6.123234e-17, 1.000000e+00]) """ - theta = numpy.radians(angle_in_degrees) - c, s = numpy.cos(theta), numpy.sin(theta) - rotation_matrix = numpy.array(((c, -s), (s, c))) - return numpy.dot(rotation_matrix, vector) + theta = np.radians(angle_in_degrees) + c, s = np.cos(theta), np.sin(theta) + rotation_matrix = np.array(((c, -s), (s, c))) + return np.dot(rotation_matrix, vector) -def plot(vectors: list[numpy.ndarray]) -> None: +def plot(vectors: list[np.ndarray]) -> None: """ Utility function to plot the vectors using matplotlib.pyplot No doctest was implemented since this function does not have a return value diff --git a/graphics/bezier_curve.py b/graphics/bezier_curve.py index 7c22329ad8b4..6eeb89da6bdf 100644 --- a/graphics/bezier_curve.py +++ b/graphics/bezier_curve.py @@ -78,7 +78,7 @@ def plot_curve(self, step_size: float = 0.01): step_size: defines the step(s) at which to evaluate the Bezier curve. The smaller the step size, the finer the curve produced. """ - from matplotlib import pyplot as plt # type: ignore + from matplotlib import pyplot as plt to_plot_x: list[float] = [] # x coordinates of points to plot to_plot_y: list[float] = [] # y coordinates of points to plot diff --git a/graphs/directed_and_undirected_(weighted)_graph.py b/graphs/directed_and_undirected_weighted_graph.py similarity index 100% rename from graphs/directed_and_undirected_(weighted)_graph.py rename to graphs/directed_and_undirected_weighted_graph.py diff --git a/graphs/graph_list.py b/graphs/graph_list.py index e871f3b8a9d6..6563cbb76132 100644 --- a/graphs/graph_list.py +++ b/graphs/graph_list.py @@ -120,29 +120,29 @@ def add_edge( else: self.adj_list[source_vertex] = [destination_vertex] self.adj_list[destination_vertex] = [source_vertex] - else: # For directed graphs - # if both source vertex and destination vertex are present in adjacency - # list, add destination vertex to source vertex list of adjacent vertices. - if source_vertex in self.adj_list and destination_vertex in self.adj_list: - self.adj_list[source_vertex].append(destination_vertex) - # if only source vertex is present in adjacency list, add destination - # vertex to source vertex list of adjacent vertices and create a new vertex - # with destination vertex as key, which has no adjacent vertex - elif source_vertex in self.adj_list: - self.adj_list[source_vertex].append(destination_vertex) - self.adj_list[destination_vertex] = [] - # if only destination vertex is present in adjacency list, create a new - # vertex with source vertex as key and assign a list containing destination - # vertex as first adjacent vertex - elif destination_vertex in self.adj_list: - self.adj_list[source_vertex] = [destination_vertex] - # if both source vertex and destination vertex are not present in adjacency - # list, create a new vertex with source vertex as key and a list containing - # destination vertex as it's first adjacent vertex. Then create a new vertex - # with destination vertex as key, which has no adjacent vertex - else: - self.adj_list[source_vertex] = [destination_vertex] - self.adj_list[destination_vertex] = [] + # For directed graphs + # if both source vertex and destination vertex are present in adjacency + # list, add destination vertex to source vertex list of adjacent vertices. + elif source_vertex in self.adj_list and destination_vertex in self.adj_list: + self.adj_list[source_vertex].append(destination_vertex) + # if only source vertex is present in adjacency list, add destination + # vertex to source vertex list of adjacent vertices and create a new vertex + # with destination vertex as key, which has no adjacent vertex + elif source_vertex in self.adj_list: + self.adj_list[source_vertex].append(destination_vertex) + self.adj_list[destination_vertex] = [] + # if only destination vertex is present in adjacency list, create a new + # vertex with source vertex as key and assign a list containing destination + # vertex as first adjacent vertex + elif destination_vertex in self.adj_list: + self.adj_list[source_vertex] = [destination_vertex] + # if both source vertex and destination vertex are not present in adjacency + # list, create a new vertex with source vertex as key and a list containing + # destination vertex as it's first adjacent vertex. Then create a new vertex + # with destination vertex as key, which has no adjacent vertex + else: + self.adj_list[source_vertex] = [destination_vertex] + self.adj_list[destination_vertex] = [] return self diff --git a/graphs/minimum_spanning_tree_prims.py b/graphs/minimum_spanning_tree_prims.py index 5a08ec57ff4d..90c9f4c91e86 100644 --- a/graphs/minimum_spanning_tree_prims.py +++ b/graphs/minimum_spanning_tree_prims.py @@ -18,11 +18,10 @@ def top_to_bottom(self, heap, start, size, positions): else: if 2 * start + 2 >= size: smallest_child = 2 * start + 1 + elif heap[2 * start + 1] < heap[2 * start + 2]: + smallest_child = 2 * start + 1 else: - if heap[2 * start + 1] < heap[2 * start + 2]: - smallest_child = 2 * start + 1 - else: - smallest_child = 2 * start + 2 + smallest_child = 2 * start + 2 if heap[smallest_child] < heap[start]: temp, temp1 = heap[smallest_child], positions[smallest_child] heap[smallest_child], positions[smallest_child] = ( diff --git a/graphs/multi_heuristic_astar.py b/graphs/multi_heuristic_astar.py index 0a18ede6ed41..6af9a187a4e9 100644 --- a/graphs/multi_heuristic_astar.py +++ b/graphs/multi_heuristic_astar.py @@ -270,24 +270,23 @@ def multi_a_star(start: TPos, goal: TPos, n_heuristic: int): back_pointer, ) close_list_inad.append(get_s) + elif g_function[goal] <= open_list[0].minkey(): + if g_function[goal] < float("inf"): + do_something(back_pointer, goal, start) else: - if g_function[goal] <= open_list[0].minkey(): - if g_function[goal] < float("inf"): - do_something(back_pointer, goal, start) - else: - get_s = open_list[0].top_show() - visited.add(get_s) - expand_state( - get_s, - 0, - visited, - g_function, - close_list_anchor, - close_list_inad, - open_list, - back_pointer, - ) - close_list_anchor.append(get_s) + get_s = open_list[0].top_show() + visited.add(get_s) + expand_state( + get_s, + 0, + visited, + g_function, + close_list_anchor, + close_list_inad, + open_list, + back_pointer, + ) + close_list_anchor.append(get_s) print("No path found to goal") print() for i in range(n - 1, -1, -1): diff --git a/machine_learning/forecasting/run.py b/machine_learning/forecasting/run.py index 64e719daacc2..dbb86caf8568 100644 --- a/machine_learning/forecasting/run.py +++ b/machine_learning/forecasting/run.py @@ -113,11 +113,10 @@ def data_safety_checker(list_vote: list, actual_result: float) -> bool: for i in list_vote: if i > actual_result: safe = not_safe + 1 + elif abs(abs(i) - abs(actual_result)) <= 0.1: + safe += 1 else: - if abs(abs(i) - abs(actual_result)) <= 0.1: - safe += 1 - else: - not_safe += 1 + not_safe += 1 return safe > not_safe diff --git a/machine_learning/gradient_descent.py b/machine_learning/gradient_descent.py index db38b3c95b52..95463faf5635 100644 --- a/machine_learning/gradient_descent.py +++ b/machine_learning/gradient_descent.py @@ -3,7 +3,7 @@ function. """ -import numpy +import numpy as np # List of input, output pairs train_data = ( @@ -116,7 +116,7 @@ def run_gradient_descent(): temp_parameter_vector[i] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) - if numpy.allclose( + if np.allclose( parameter_vector, temp_parameter_vector, atol=absolute_error_limit, diff --git a/maths/largest_of_very_large_numbers.py b/maths/largest_of_very_large_numbers.py index eb5c121fd262..edee50371e02 100644 --- a/maths/largest_of_very_large_numbers.py +++ b/maths/largest_of_very_large_numbers.py @@ -20,11 +20,10 @@ def res(x, y): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.log10(x) - else: - if x == 0: # 0 raised to any number is 0 - return 0 - elif y == 0: - return 1 # any number raised to 0 is 1 + elif x == 0: # 0 raised to any number is 0 + return 0 + elif y == 0: + return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen") diff --git a/maths/pollard_rho.py b/maths/pollard_rho.py index 5082f54f71a8..e8bc89cef6c5 100644 --- a/maths/pollard_rho.py +++ b/maths/pollard_rho.py @@ -94,14 +94,13 @@ def rand_fn(value: int, step: int, modulus: int) -> int: if divisor == 1: # No common divisor yet, just keep searching. continue + # We found a common divisor! + elif divisor == num: + # Unfortunately, the divisor is ``num`` itself and is useless. + break else: - # We found a common divisor! - if divisor == num: - # Unfortunately, the divisor is ``num`` itself and is useless. - break - else: - # The divisor is a nontrivial factor of ``num``! - return divisor + # The divisor is a nontrivial factor of ``num``! + return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare diff --git a/matrix/cramers_rule_2x2.py b/matrix/cramers_rule_2x2.py index 4f52dbe646ad..081035bec002 100644 --- a/matrix/cramers_rule_2x2.py +++ b/matrix/cramers_rule_2x2.py @@ -73,12 +73,11 @@ def cramers_rule_2x2(equation1: list[int], equation2: list[int]) -> tuple[float, raise ValueError("Infinite solutions. (Consistent system)") else: raise ValueError("No solution. (Inconsistent system)") + elif determinant_x == determinant_y == 0: + # Trivial solution (Inconsistent system) + return (0.0, 0.0) else: - if determinant_x == determinant_y == 0: - # Trivial solution (Inconsistent system) - return (0.0, 0.0) - else: - x = determinant_x / determinant - y = determinant_y / determinant - # Non-Trivial Solution (Consistent system) - return (x, y) + x = determinant_x / determinant + y = determinant_y / determinant + # Non-Trivial Solution (Consistent system) + return (x, y) diff --git a/neural_network/input_data.py b/neural_network/input_data.py index f7ae86b48e65..9d4195487dbb 100644 --- a/neural_network/input_data.py +++ b/neural_network/input_data.py @@ -22,7 +22,7 @@ import typing import urllib -import numpy +import numpy as np from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated @@ -39,8 +39,8 @@ class _Datasets(typing.NamedTuple): def _read32(bytestream): - dt = numpy.dtype(numpy.uint32).newbyteorder(">") - return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] + dt = np.dtype(np.uint32).newbyteorder(">") + return np.frombuffer(bytestream.read(4), dtype=dt)[0] @deprecated(None, "Please use tf.data to implement this functionality.") @@ -68,7 +68,7 @@ def _extract_images(f): rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) - data = numpy.frombuffer(buf, dtype=numpy.uint8) + data = np.frombuffer(buf, dtype=np.uint8) data = data.reshape(num_images, rows, cols, 1) return data @@ -77,8 +77,8 @@ def _extract_images(f): def _dense_to_one_hot(labels_dense, num_classes): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] - index_offset = numpy.arange(num_labels) * num_classes - labels_one_hot = numpy.zeros((num_labels, num_classes)) + index_offset = np.arange(num_labels) * num_classes + labels_one_hot = np.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot @@ -107,7 +107,7 @@ def _extract_labels(f, one_hot=False, num_classes=10): ) num_items = _read32(bytestream) buf = bytestream.read(num_items) - labels = numpy.frombuffer(buf, dtype=numpy.uint8) + labels = np.frombuffer(buf, dtype=np.uint8) if one_hot: return _dense_to_one_hot(labels, num_classes) return labels @@ -153,7 +153,7 @@ def __init__( """ seed1, seed2 = random_seed.get_seed(seed) # If op level seed is not set, use whatever graph level seed is returned - numpy.random.seed(seed1 if seed is None else seed2) + np.random.seed(seed1 if seed is None else seed2) dtype = dtypes.as_dtype(dtype).base_dtype if dtype not in (dtypes.uint8, dtypes.float32): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype) @@ -175,8 +175,8 @@ def __init__( ) if dtype == dtypes.float32: # Convert from [0, 255] -> [0.0, 1.0]. - images = images.astype(numpy.float32) - images = numpy.multiply(images, 1.0 / 255.0) + images = images.astype(np.float32) + images = np.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 @@ -210,8 +210,8 @@ def next_batch(self, batch_size, fake_data=False, shuffle=True): start = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: - perm0 = numpy.arange(self._num_examples) - numpy.random.shuffle(perm0) + perm0 = np.arange(self._num_examples) + np.random.shuffle(perm0) self._images = self.images[perm0] self._labels = self.labels[perm0] # Go to the next epoch @@ -224,8 +224,8 @@ def next_batch(self, batch_size, fake_data=False, shuffle=True): labels_rest_part = self._labels[start : self._num_examples] # Shuffle the data if shuffle: - perm = numpy.arange(self._num_examples) - numpy.random.shuffle(perm) + perm = np.arange(self._num_examples) + np.random.shuffle(perm) self._images = self.images[perm] self._labels = self.labels[perm] # Start next epoch @@ -235,8 +235,8 @@ def next_batch(self, batch_size, fake_data=False, shuffle=True): images_new_part = self._images[start:end] labels_new_part = self._labels[start:end] return ( - numpy.concatenate((images_rest_part, images_new_part), axis=0), - numpy.concatenate((labels_rest_part, labels_new_part), axis=0), + np.concatenate((images_rest_part, images_new_part), axis=0), + np.concatenate((labels_rest_part, labels_new_part), axis=0), ) else: self._index_in_epoch += batch_size diff --git a/neural_network/2_hidden_layers_neural_network.py b/neural_network/two_hidden_layers_neural_network.py similarity index 80% rename from neural_network/2_hidden_layers_neural_network.py rename to neural_network/two_hidden_layers_neural_network.py index 7b374a93d039..dea7e2342d9f 100644 --- a/neural_network/2_hidden_layers_neural_network.py +++ b/neural_network/two_hidden_layers_neural_network.py @@ -5,11 +5,11 @@ - https://en.wikipedia.org/wiki/Feedforward_neural_network (Feedforward) """ -import numpy +import numpy as np class TwoHiddenLayerNeuralNetwork: - def __init__(self, input_array: numpy.ndarray, output_array: numpy.ndarray) -> None: + def __init__(self, input_array: np.ndarray, output_array: np.ndarray) -> None: """ This function initializes the TwoHiddenLayerNeuralNetwork class with random weights for every layer and initializes predicted output with zeroes. @@ -28,30 +28,28 @@ def __init__(self, input_array: numpy.ndarray, output_array: numpy.ndarray) -> N # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. - self.input_layer_and_first_hidden_layer_weights = numpy.random.rand( + self.input_layer_and_first_hidden_layer_weights = np.random.rand( self.input_array.shape[1], 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. - self.first_hidden_layer_and_second_hidden_layer_weights = numpy.random.rand( - 4, 3 - ) + self.first_hidden_layer_and_second_hidden_layer_weights = np.random.rand(4, 3) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. - self.second_hidden_layer_and_output_layer_weights = numpy.random.rand(3, 1) + self.second_hidden_layer_and_output_layer_weights = np.random.rand(3, 1) # Real output values provided. self.output_array = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. - self.predicted_output = numpy.zeros(output_array.shape) + self.predicted_output = np.zeros(output_array.shape) - def feedforward(self) -> numpy.ndarray: + def feedforward(self) -> np.ndarray: """ The information moves in only one direction i.e. forward from the input nodes, through the two hidden nodes and to the output nodes. @@ -60,24 +58,24 @@ def feedforward(self) -> numpy.ndarray: Return layer_between_second_hidden_layer_and_output (i.e the last layer of the neural network). - >>> input_val = numpy.array(([0, 0, 0], [0, 0, 0], [0, 0, 0]), dtype=float) - >>> output_val = numpy.array(([0], [0], [0]), dtype=float) + >>> input_val = np.array(([0, 0, 0], [0, 0, 0], [0, 0, 0]), dtype=float) + >>> output_val = np.array(([0], [0], [0]), dtype=float) >>> nn = TwoHiddenLayerNeuralNetwork(input_val, output_val) >>> res = nn.feedforward() - >>> array_sum = numpy.sum(res) - >>> numpy.isnan(array_sum) + >>> array_sum = np.sum(res) + >>> np.isnan(array_sum) False """ # Layer_between_input_and_first_hidden_layer is the layer connecting the # input nodes with the first hidden layer nodes. self.layer_between_input_and_first_hidden_layer = sigmoid( - numpy.dot(self.input_array, self.input_layer_and_first_hidden_layer_weights) + np.dot(self.input_array, self.input_layer_and_first_hidden_layer_weights) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. self.layer_between_first_hidden_layer_and_second_hidden_layer = sigmoid( - numpy.dot( + np.dot( self.layer_between_input_and_first_hidden_layer, self.first_hidden_layer_and_second_hidden_layer_weights, ) @@ -86,7 +84,7 @@ def feedforward(self) -> numpy.ndarray: # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. self.layer_between_second_hidden_layer_and_output = sigmoid( - numpy.dot( + np.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer, self.second_hidden_layer_and_output_layer_weights, ) @@ -100,8 +98,8 @@ def back_propagation(self) -> None: error rate obtained in the previous epoch (i.e., iteration). Updation is done using derivative of sogmoid activation function. - >>> input_val = numpy.array(([0, 0, 0], [0, 0, 0], [0, 0, 0]), dtype=float) - >>> output_val = numpy.array(([0], [0], [0]), dtype=float) + >>> input_val = np.array(([0, 0, 0], [0, 0, 0], [0, 0, 0]), dtype=float) + >>> output_val = np.array(([0], [0], [0]), dtype=float) >>> nn = TwoHiddenLayerNeuralNetwork(input_val, output_val) >>> res = nn.feedforward() >>> nn.back_propagation() @@ -110,15 +108,15 @@ def back_propagation(self) -> None: False """ - updated_second_hidden_layer_and_output_layer_weights = numpy.dot( + updated_second_hidden_layer_and_output_layer_weights = np.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T, 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output), ) - updated_first_hidden_layer_and_second_hidden_layer_weights = numpy.dot( + updated_first_hidden_layer_and_second_hidden_layer_weights = np.dot( self.layer_between_input_and_first_hidden_layer.T, - numpy.dot( + np.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output), @@ -128,10 +126,10 @@ def back_propagation(self) -> None: self.layer_between_first_hidden_layer_and_second_hidden_layer ), ) - updated_input_layer_and_first_hidden_layer_weights = numpy.dot( + updated_input_layer_and_first_hidden_layer_weights = np.dot( self.input_array.T, - numpy.dot( - numpy.dot( + np.dot( + np.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output), @@ -155,7 +153,7 @@ def back_propagation(self) -> None: updated_second_hidden_layer_and_output_layer_weights ) - def train(self, output: numpy.ndarray, iterations: int, give_loss: bool) -> None: + def train(self, output: np.ndarray, iterations: int, give_loss: bool) -> None: """ Performs the feedforwarding and back propagation process for the given number of iterations. @@ -166,8 +164,8 @@ def train(self, output: numpy.ndarray, iterations: int, give_loss: bool) -> None give_loss : boolean value, If True then prints loss for each iteration, If False then nothing is printed - >>> input_val = numpy.array(([0, 0, 0], [0, 1, 0], [0, 0, 1]), dtype=float) - >>> output_val = numpy.array(([0], [1], [1]), dtype=float) + >>> input_val = np.array(([0, 0, 0], [0, 1, 0], [0, 0, 1]), dtype=float) + >>> output_val = np.array(([0], [1], [1]), dtype=float) >>> nn = TwoHiddenLayerNeuralNetwork(input_val, output_val) >>> first_iteration_weights = nn.feedforward() >>> nn.back_propagation() @@ -179,10 +177,10 @@ def train(self, output: numpy.ndarray, iterations: int, give_loss: bool) -> None self.output = self.feedforward() self.back_propagation() if give_loss: - loss = numpy.mean(numpy.square(output - self.feedforward())) + loss = np.mean(np.square(output - self.feedforward())) print(f"Iteration {iteration} Loss: {loss}") - def predict(self, input_arr: numpy.ndarray) -> int: + def predict(self, input_arr: np.ndarray) -> int: """ Predict's the output for the given input values using the trained neural network. @@ -192,8 +190,8 @@ def predict(self, input_arr: numpy.ndarray) -> int: than the threshold value else returns 0, as the real output values are in binary. - >>> input_val = numpy.array(([0, 0, 0], [0, 1, 0], [0, 0, 1]), dtype=float) - >>> output_val = numpy.array(([0], [1], [1]), dtype=float) + >>> input_val = np.array(([0, 0, 0], [0, 1, 0], [0, 0, 1]), dtype=float) + >>> output_val = np.array(([0], [1], [1]), dtype=float) >>> nn = TwoHiddenLayerNeuralNetwork(input_val, output_val) >>> nn.train(output_val, 1000, False) >>> nn.predict([0, 1, 0]) in (0, 1) @@ -204,18 +202,18 @@ def predict(self, input_arr: numpy.ndarray) -> int: self.array = input_arr self.layer_between_input_and_first_hidden_layer = sigmoid( - numpy.dot(self.array, self.input_layer_and_first_hidden_layer_weights) + np.dot(self.array, self.input_layer_and_first_hidden_layer_weights) ) self.layer_between_first_hidden_layer_and_second_hidden_layer = sigmoid( - numpy.dot( + np.dot( self.layer_between_input_and_first_hidden_layer, self.first_hidden_layer_and_second_hidden_layer_weights, ) ) self.layer_between_second_hidden_layer_and_output = sigmoid( - numpy.dot( + np.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer, self.second_hidden_layer_and_output_layer_weights, ) @@ -224,26 +222,26 @@ def predict(self, input_arr: numpy.ndarray) -> int: return int((self.layer_between_second_hidden_layer_and_output > 0.6)[0]) -def sigmoid(value: numpy.ndarray) -> numpy.ndarray: +def sigmoid(value: np.ndarray) -> np.ndarray: """ Applies sigmoid activation function. return normalized values - >>> sigmoid(numpy.array(([1, 0, 2], [1, 0, 0]), dtype=numpy.float64)) + >>> sigmoid(np.array(([1, 0, 2], [1, 0, 0]), dtype=np.float64)) array([[0.73105858, 0.5 , 0.88079708], [0.73105858, 0.5 , 0.5 ]]) """ - return 1 / (1 + numpy.exp(-value)) + return 1 / (1 + np.exp(-value)) -def sigmoid_derivative(value: numpy.ndarray) -> numpy.ndarray: +def sigmoid_derivative(value: np.ndarray) -> np.ndarray: """ Provides the derivative value of the sigmoid function. returns derivative of the sigmoid value - >>> sigmoid_derivative(numpy.array(([1, 0, 2], [1, 0, 0]), dtype=numpy.float64)) + >>> sigmoid_derivative(np.array(([1, 0, 2], [1, 0, 0]), dtype=np.float64)) array([[ 0., 0., -2.], [ 0., 0., 0.]]) """ @@ -264,7 +262,7 @@ def example() -> int: True """ # Input values. - test_input = numpy.array( + test_input = np.array( ( [0, 0, 0], [0, 0, 1], @@ -275,11 +273,11 @@ def example() -> int: [1, 1, 0], [1, 1, 1], ), - dtype=numpy.float64, + dtype=np.float64, ) # True output values for the given input values. - output = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]), dtype=numpy.float64) + output = np.array(([0], [1], [1], [0], [1], [0], [0], [1]), dtype=np.float64) # Calling neural network class. neural_network = TwoHiddenLayerNeuralNetwork( @@ -290,7 +288,7 @@ def example() -> int: # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=output, iterations=10, give_loss=False) - return neural_network.predict(numpy.array(([1, 1, 1]), dtype=numpy.float64)) + return neural_network.predict(np.array(([1, 1, 1]), dtype=np.float64)) if __name__ == "__main__": diff --git a/project_euler/problem_019/sol1.py b/project_euler/problem_019/sol1.py index 0e38137d4f01..656f104c390d 100644 --- a/project_euler/problem_019/sol1.py +++ b/project_euler/problem_019/sol1.py @@ -46,10 +46,9 @@ def solution(): elif day > 29 and month == 2: month += 1 day = day - 29 - else: - if day > days_per_month[month - 1]: - month += 1 - day = day - days_per_month[month - 2] + elif day > days_per_month[month - 1]: + month += 1 + day = day - days_per_month[month - 2] if month > 12: year += 1 diff --git a/pyproject.toml b/pyproject.toml index 5187491e5ee7..22da7cb777b5 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -6,14 +6,10 @@ lint.ignore = [ # `ruff rule S101` for a description of that rule "EM101", # Exception must not use a string literal, assign to variable first "EXE001", # Shebang is present but file is not executable" -- FIX ME "G004", # Logging statement uses f-string - "ICN001", # `matplotlib.pyplot` should be imported as `plt` -- FIX ME "INP001", # File `x/y/z.py` is part of an implicit namespace package. Add an `__init__.py`. -- FIX ME - "N999", # Invalid module name -- FIX ME "NPY002", # Replace legacy `np.random.choice` call with `np.random.Generator` -- FIX ME "PGH003", # Use specific rule codes when ignoring type issues -- FIX ME "PLC1901", # `{}` can be simplified to `{}` as an empty string is falsey - "PLR5501", # Consider using `elif` instead of `else` -- FIX ME - "PLW0120", # `else` clause on loop without a `break` statement -- FIX ME "PLW060", # Using global for `{name}` but no assignment is done -- DO NOT FIX "PLW2901", # PLW2901: Redefined loop variable -- FIX ME "PT011", # `pytest.raises(Exception)` is too broad, set the `match` parameter or use a more specific exception diff --git a/searches/fibonacci_search.py b/searches/fibonacci_search.py index ec3dfa7f30f6..7b2252a68be2 100644 --- a/searches/fibonacci_search.py +++ b/searches/fibonacci_search.py @@ -123,8 +123,7 @@ def fibonacci_search(arr: list, val: int) -> int: elif val > item_k_1: offset += fibonacci(fibb_k - 1) fibb_k -= 2 - else: - return -1 + return -1 if __name__ == "__main__": diff --git a/searches/hill_climbing.py b/searches/hill_climbing.py index 83a3b8b74e27..689b7e5cca8f 100644 --- a/searches/hill_climbing.py +++ b/searches/hill_climbing.py @@ -137,11 +137,10 @@ def hill_climbing( if change > max_change and change > 0: max_change = change next_state = neighbor - else: # finding min + elif change < min_change and change < 0: # finding min # to direction with greatest descent - if change < min_change and change < 0: - min_change = change - next_state = neighbor + min_change = change + next_state = neighbor if next_state is not None: # we found at least one neighbor which improved the current state current_state = next_state diff --git a/searches/interpolation_search.py b/searches/interpolation_search.py index 49194c2600a0..0591788aa40b 100644 --- a/searches/interpolation_search.py +++ b/searches/interpolation_search.py @@ -33,18 +33,16 @@ def interpolation_search(sorted_collection, item): current_item = sorted_collection[point] if current_item == item: return point + elif point < left: + right = left + left = point + elif point > right: + left = right + right = point + elif item < current_item: + right = point - 1 else: - if point < left: - right = left - left = point - elif point > right: - left = right - right = point - else: - if item < current_item: - right = point - 1 - else: - left = point + 1 + left = point + 1 return None @@ -79,15 +77,14 @@ def interpolation_search_by_recursion(sorted_collection, item, left, right): return interpolation_search_by_recursion(sorted_collection, item, point, left) elif point > right: return interpolation_search_by_recursion(sorted_collection, item, right, left) + elif sorted_collection[point] > item: + return interpolation_search_by_recursion( + sorted_collection, item, left, point - 1 + ) else: - if sorted_collection[point] > item: - return interpolation_search_by_recursion( - sorted_collection, item, left, point - 1 - ) - else: - return interpolation_search_by_recursion( - sorted_collection, item, point + 1, right - ) + return interpolation_search_by_recursion( + sorted_collection, item, point + 1, right + ) def __assert_sorted(collection): diff --git a/searches/ternary_search.py b/searches/ternary_search.py index 8dcd6b5bde2e..73e4b1ddc68b 100644 --- a/searches/ternary_search.py +++ b/searches/ternary_search.py @@ -106,8 +106,7 @@ def ite_ternary_search(array: list[int], target: int) -> int: else: left = one_third + 1 right = two_third - 1 - else: - return -1 + return -1 def rec_ternary_search(left: int, right: int, array: list[int], target: int) -> int: diff --git a/strings/min_cost_string_conversion.py b/strings/min_cost_string_conversion.py index 0fad0b88c370..d147a9d7954c 100644 --- a/strings/min_cost_string_conversion.py +++ b/strings/min_cost_string_conversion.py @@ -60,19 +60,18 @@ def compute_transform_tables( def assemble_transformation(ops: list[list[str]], i: int, j: int) -> list[str]: if i == 0 and j == 0: return [] + elif ops[i][j][0] in {"C", "R"}: + seq = assemble_transformation(ops, i - 1, j - 1) + seq.append(ops[i][j]) + return seq + elif ops[i][j][0] == "D": + seq = assemble_transformation(ops, i - 1, j) + seq.append(ops[i][j]) + return seq else: - if ops[i][j][0] in {"C", "R"}: - seq = assemble_transformation(ops, i - 1, j - 1) - seq.append(ops[i][j]) - return seq - elif ops[i][j][0] == "D": - seq = assemble_transformation(ops, i - 1, j) - seq.append(ops[i][j]) - return seq - else: - seq = assemble_transformation(ops, i, j - 1) - seq.append(ops[i][j]) - return seq + seq = assemble_transformation(ops, i, j - 1) + seq.append(ops[i][j]) + return seq if __name__ == "__main__":