diff --git a/project_euler/problem_164/__init__.py b/project_euler/problem_164/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_164/sol1.py b/project_euler/problem_164/sol1.py new file mode 100644 index 000000000000..5387c89bd757 --- /dev/null +++ b/project_euler/problem_164/sol1.py @@ -0,0 +1,65 @@ +""" +Project Euler Problem 164: https://projecteuler.net/problem=164 + +Three Consecutive Digital Sum Limit + +How many 20 digit numbers n (without any leading zero) exist such that no three +consecutive digits of n have a sum greater than 9? + +Brute-force recursive solution with caching of intermediate results. +""" + + +def solve( + digit: int, prev1: int, prev2: int, sum_max: int, first: bool, cache: dict[str, int] +) -> int: + """ + Solve for remaining 'digit' digits, with previous 'prev1' digit, and + previous-previous 'prev2' digit, total sum of 'sum_max'. + Pass around 'cache' to store/reuse intermediate results. + + >>> solve(digit=1, prev1=0, prev2=0, sum_max=9, first=True, cache={}) + 9 + >>> solve(digit=1, prev1=0, prev2=0, sum_max=9, first=False, cache={}) + 10 + """ + if digit == 0: + return 1 + + cache_str = f"{digit},{prev1},{prev2}" + if cache_str in cache: + return cache[cache_str] + + comb = 0 + for curr in range(sum_max - prev1 - prev2 + 1): + if first and curr == 0: + continue + + comb += solve( + digit=digit - 1, + prev1=curr, + prev2=prev1, + sum_max=sum_max, + first=False, + cache=cache, + ) + + cache[cache_str] = comb + return comb + + +def solution(n_digits: int = 20) -> int: + """ + Solves the problem for n_digits number of digits. + + >>> solution(2) + 45 + >>> solution(10) + 21838806 + """ + cache: dict[str, int] = {} + return solve(digit=n_digits, prev1=0, prev2=0, sum_max=9, first=True, cache=cache) + + +if __name__ == "__main__": + print(f"{solution(10) = }") diff --git a/project_euler/problem_190/__init__.py b/project_euler/problem_190/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/project_euler/problem_190/sol1.py b/project_euler/problem_190/sol1.py new file mode 100644 index 000000000000..b18d45be16b4 --- /dev/null +++ b/project_euler/problem_190/sol1.py @@ -0,0 +1,48 @@ +""" +Project Euler Problem 190: https://projecteuler.net/problem=190 + +Maximising a Weighted Product + +Let S_m = (x_1, x_2, ..., x_m) be the m-tuple of positive real numbers with +x_1 + x_2 + ... + x_m = m for which P_m = x_1 * x_2^2 * ... * x_m^m is maximised. + +For example, it can be verified that |_ P_10 _| = 4112 +(|_ _| is the integer part function). + +Find Sum_{m=2}^15 = |_ P_m _|. + +Solution: +- Fix x_1 = m - x_2 - ... - x_m. +- Calculate partial derivatives of P_m wrt the x_2, ..., x_m. This gives that + x_2 = 2 * x_1, x_3 = 3 * x_1, ..., x_m = m * x_1. +- Calculate partial second order derivatives of P_m wrt the x_2, ..., x_m. + By plugging in the values from the previous step, can verify that solution is maximum. +""" + + +def solution(n: int = 15) -> int: + """ + Calculate sum of |_ P_m _| for m from 2 to n. + + >>> solution(2) + 1 + >>> solution(3) + 2 + >>> solution(4) + 4 + >>> solution(5) + 10 + """ + total = 0 + for m in range(2, n + 1): + x1 = 2 / (m + 1) + p = 1.0 + for i in range(1, m + 1): + xi = i * x1 + p *= xi**i + total += int(p) + return total + + +if __name__ == "__main__": + print(f"{solution() = }")