|
| 1 | +/** |
| 2 | + * @file |
| 3 | + * @brief Calculate quadratic equation with complex roots, i.e. b^2 - 4ac < 0. |
| 4 | + * @see https://en.wikipedia.org/wiki/Quadratic_equation, |
| 5 | + * https://en.wikipedia.org/wiki/Quadratic_equation#discriminant |
| 6 | + * |
| 7 | + * @author [Renjian-buchai](https://github.com/Renjian-buchai) |
| 8 | + */ |
| 9 | + |
| 10 | +#include <array> |
| 11 | +#include <cmath> |
| 12 | +#include <complex> |
| 13 | +#include <exception> |
| 14 | + |
| 15 | +/// @brief Quadratic equation calculator. |
| 16 | +/// @param a quadratic coefficient. |
| 17 | +/// @param b linear coefficient. |
| 18 | +/// @param c constant |
| 19 | +/// @return Array containing the roots of quadratic equation, incl. complex |
| 20 | +/// root. |
| 21 | +std::array<std::complex<long double>, 2> quadraticEquation(long double a, |
| 22 | + long double b, |
| 23 | + long double c) { |
| 24 | + /** |
| 25 | + * Calculates any quadratic equation in form ax^2 + bx + c. |
| 26 | + * |
| 27 | + * Quadratic equation: |
| 28 | + * x = (-b +/- sqrt(b^2 - 4ac)) / 2a |
| 29 | + * |
| 30 | + * e.g. |
| 31 | + * using namespace std; |
| 32 | + * int main() { |
| 33 | + * array<complex<long double, 2> solutions = quadraticEquation(1, 2, 1); |
| 34 | + * cout << solutions[0] << " " << solutions[1] << "\n"; |
| 35 | + * |
| 36 | + * solutions = quadraticEquation(1, 1, 1); // Reusing solutions. |
| 37 | + * cout << solutions[0] << " " << solutions[1] << "\n"; |
| 38 | + * return 0; |
| 39 | + * } |
| 40 | + * |
| 41 | + * Output: |
| 42 | + * (-1, 0) (-1, 0) |
| 43 | + * (-0.5,0.866025) (-0.5,0.866025) |
| 44 | + */ |
| 45 | + |
| 46 | + if (a == 0) |
| 47 | + throw std::invalid_argument("quadratic coefficient cannot be 0"); |
| 48 | + |
| 49 | + long double discriminant = b * b - 4 * a * c; |
| 50 | + std::array<std::complex<long double>, 2> solutions{0, 0}; |
| 51 | + |
| 52 | + // Complex root (discriminant < 0) |
| 53 | + // Note that the left term (-b / 2a) is always real. The imaginary part |
| 54 | + // appears when b^2 - 4ac < 0, so sqrt(b^2 - 4ac) has no real roots. So, the |
| 55 | + // imaginary component is i * (+/-)sqrt(abs(b^2 - 4ac)) / 2a. |
| 56 | + if (discriminant < 0) { |
| 57 | + // Since b^2 - 4ac is < 0, for faster computation, -discriminant is |
| 58 | + // enough to make it positive. |
| 59 | + solutions[0] = std::complex<long double>{ |
| 60 | + -b * 0.5 / a, -std::sqrt(-discriminant) * 0.5 / a}; |
| 61 | + solutions[1] = std::complex<long double>{ |
| 62 | + -b * 0.5 / a, std::sqrt(-discriminant) * 0.5 / a}; |
| 63 | + } else { |
| 64 | + // Since discriminant > 0, there are only real roots. Therefore, |
| 65 | + // imaginary component = 0. |
| 66 | + solutions[0] = std::complex<long double>{ |
| 67 | + (-b - std::sqrt(discriminant)) * 0.5 / a, 0}; |
| 68 | + solutions[1] = std::complex<long double>{ |
| 69 | + (-b + std::sqrt(discriminant)) * 0.5 / a, 0}; |
| 70 | + } |
| 71 | + |
| 72 | + return solutions; |
| 73 | +} |
0 commit comments